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Abstract: Ensuring the success and safety of deployed robotic systems often requires predicting their
behavior in a wide range of conditions, precluding practical testing of the physical system itself. We
introduce an approach to predict the robustness of a perception system in a broad range of conditions
through simulation of challenging real-world conditions achieved by modifying real images according
to physical phenomena, producing physically-realistic, mutated images. Typical perception-system
performance metrics are difficult to relate to system-level application- or safety-requirements. We
propose performance-evaluating metrics that are more closely tied to these targets, a relationship
dependent on the amount of application-specific context available and assumptions imposed. We
also introduce a novel robustness metric, Robustness ROC, that can be applied to any of these
performance metrics. We demonstrate this method on NREC-AgPD, a large dataset focused on person
detection for off-road driving in orchard environments, assessing several recent person detectors, and
showing how considerations of robustness can often change the best-choice algorithm.
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1. Introduction
The rapid growth of autonomous systems being developed for safety-critical applications requires
efficient and effective methods to test and ensure these systems will be robust in the wide range of
situations they will encounter. Ensuring safety through exhaustive real-world testing is infeasible
for most practical systems, requiring on the order of billions of test miles or hours of autonomous
operation for a large-scale autonomous vehicle fleet (Kalra & Paddock, 2016; Koopman & Wagner,
2016). A promising alternative is to make use of the ever-growing availability of computational
resources to expand upon what is feasible with real-world testing. It is often infeasible to field test
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every algorithm under consideration for a problem, so it is important to have techniques to guide the
process of algorithm selection and parameterization before deployment.

A promising avenue of previous work (discussed further in Section 2.1) modifies real images by
applying mutations that model degrading effects in order to evaluate systems’ robustness to these
effects. This approach allows developers to augment previously logged runs of the robot system
with effects that would normally require much more data collection to capture, greatly lowering
the effort to achieve test coverage breadth. In this work, we introduce techniques to evaluate the
performance and safety of a perception component early in the design process, while taking into
account its robustness to a variety of challenging conditions. While some prior work first demonstrated
the use of simulated but physically-realistic, adverse conditions that augment real data to measure
robustness (Pezzementi, Tabor, Yim, et al., 2018), this is the first work to measure robustness in
terms of the performance of the robotic system of which the perception module is a part, and it
introduces improved metrics to recognize vulnerabilities missed by prior work. During the development
of integrated robotic systems, many component-level choices must be made before the system is
fully embodied. We propose evaluation methods to guide algorithm selection at this stage while
remaining largely agnostic to algorithm parameter choices, but allowing for incorporation of available
application-specific context.

Drawing from and building on existing work in simulation and robustness testing (discussed
further in Section 2), we assemble a set of realistic image mutations that represent a variety of
challenging conditions that are often absent from training and evaluation data, but are conditions
that a robotic perception system may encounter when deployed. We then apply them to a large-scale
dataset, NREC-AgPD (Pezzementi, Tabor, Hu, et al., 2018), a dataset of stereo videos (nearly 100K
labeled frames) from robotic orchard vehicles primarily driving up to people in many scenarios, with
variation in appearance, pose, activity, level of occlusion, and setting. This allows us to evaluate the
effects of the mutations on performance for a safety-critical task, person detection. The mutations
applied include procedural mutations such as blurring and changes that remove image data, as well as
what we call “contextual mutations” that make use of environment geometry information to perform
depth-based simulation of haze and defocus effects.

We evaluate robustness across one dimension in the space of algorithm parameterizations through
the use of trade-off curves and the changes imparted on them by these image mutations. Our
approach is inspired by the receiver operating characteristic (ROC) curve, which is often used in
problems such as classification and detection to characterize the trade-off between true and false
detections by evaluating all possible combinations achievable by varying an underlying sensitivity
threshold. We demonstrate how to generalize this concept to analyze how varying one parameter
affects overall system performance with respect to, for example, safety invariants. We do this by
introducing additional levels of system and application context to generate different trade-off curves.
Then we show a new way to compare curves resulting from images with and without mutations, to
compute robustness to those mutations. The technique, which we call Robustness ROC (RobROC,
see Table A1 for list of key symbols and acronyms), also improves on shortcomings of traditional
ROC analysis in the context of evaluating robustness: We will show that it captures robustness
problems that previous metrics improperly ignore.

Optimizing a system for safety involves an inherent trade-off with its availabil-
ity/efficiency/productivity. At one extreme, one can guarantee a vehicle will not carry out unsafe
motions by preventing all motion, but this prevents it from being able to do anything productive.
More practically, decisions of whether to deploy a robot to automate a process are usually driven
by projections of its effect on efficiency, so it is essential to keep track of efficiency simultaneously
with optimization to achieve the desired level of safety. Multiple-Criteria Decision Making (MCDM)
provides techniques for analyzing such problems with multiple, potentially-conflicting goals and is
discussed further in Section 2.4.

We apply our technique on an example application, namely person-detection to safeguard an
autonomous orchard robot, exploring the detection-sensitivity parameter space. By evaluating a
variety of different algorithms’ performance, we show that performance rankings can change under
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these effects; i.e., a system designer’s choice of the best algorithm for the task would change if
robustness to these effects is important, compared to the standard analysis that does not consider
robustness. We also explore the effects of introducing different levels of application and system context
(and corresponding assumptions and requirements on the analysis) for this problem and how well
trends generalize across context levels. In our example application, this context captures the idea
that it’s much more important to detect people immediately in the vehicle path than those far from
it; we find this additional context can also change decisions, showing value in performing analysis
with as much context as possible.

Our key contributions are therefore:

• Robustness ROC, a novel method to measure robustness to unusual conditions, applicable to a
general class of trade-off curves

• Proposals of possible trade-off curves for a robotic safeguarding application, incorporat-
ing varying amounts of application context to facilitate tying performance back to system
requirements

• Application of our Robustness ROC technique to a varied set of person detectors on a large
dataset, along with analysis of robustness trends with respect to diverse, realistic image
mutations

2. Related work
2.1. Robustness
Some previous work has investigated performance degradation from simple image processing effects or
“image mutations”, usually on the task of classification/recognition (and not the more complex task
of detection). Most notable among this work is the creation of the ImageNet-C dataset (Hendrycks &
Dietterich, 2019), which models 15 types of image corruption at different levels of severity. About half
of these model simple processes including noise (Gaussian, shot, and impulse), basic image processing
(brightness and contrast), and compression artifacts (pixelate, JPEG). The rest are based on a variety
of physical phenomena, such as fog, snow, defocus and other types of blur; since they do not have
3D information available though, they can not be modeled with high fidelity. Follow-on work finds
that humans are much more robust than deep networks to most mutations, though augmenting on
one type of mutation helps with robustness against that particular mutation (often giving better
robustness than humans) (Geirhos et al., 2018). Unfortunately it offers only limited robustness gains
against other mutations and attacks (Geirhos et al., 2018; Gu et al., 2019; Kang et al., 2020), and it
is infeasible to train on all combinations of mutations. AutoAugment provides a method to learn
an augmentation strategy that best fits a target dataset (Cubuk et al., 2019), and AugMix adds a
consistency objective across mutations (Hendrycks et al., 2020).

DeepXplore (Pei et al., 2017) evaluates robustness on an end-to-end learning task, using the
DAVE-2 self-driving system. Since ground truth correct answers are not available, they use consensus
between systems as a proxy for an oracle of the desired output. They then introduce the idea of
neuron coverage of test inputs to whitebox DNNs as a metric for whether a system’s robustness is
being effectively evaluated and propose it as improvement over code coverage. However, other work
has found this method to be an ineffective indicator of robustness (Dong et al., 2020).

VISTA (Amini et al., 2020) uses real image data with stereo depth maps and interpolates them to
realistically estimate images from novel viewpoints to train reinforcement learning approaches.

Evaluating robustness of object detectors is a recent area of research. Michaelis et al. (2020) applies
mutations that include a mix of simple simulation of physically realizable conditions, such as snow,
and other less realistic conditions, such as elastic transformations, and they evaluate robustness of
object detection on Pascal VOC, COCO, and CityScapes. In our own previous work, Pezzementi,
Tabor, Yim, et al. (2018), we considered only physically realistic mutations, which we again apply
here. Others have begun to make use of depth information to do more physically realistic modeling of
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several weather phenomena. Using fog models very similar to ours, Foggy CityScapes (Sakaridis et al.,
2018) generates fog-perturbed images of the CityScapes dataset, and von Bernuth et al. (2019) shows
robustness results on the KITTI object detection benchmark, along with physically-realistic snow
modeling. Volk et al. (2019) similarly evaluates performance against a physically-realistic rain model
on the KITTI object detection benchmark, with an iterative retraining scheme to achieve robustness.
Additionally, Zhang and Wang (2019) examined how to improve robustness of detection with respect
to adversarial mutation. However, all of this work follows the trend of evaluating robustness by simply
comparing average precision before and after perturbing the image set, which we will show does not
capture many changes in behavior that may result for a deployed system. Zhong et al. (2020) uses a
similar set of mutations to Michaelis et al. (2020) and proposes a robustness metric that measures
the minimum mutation (in the sense of Lp norm) required to lead to an error, averaged across all the
evaluation images; we argue that this metric is less extensible to understanding the magnitude of
effects at the system level though.

2.2. Simulation
Another popular tool for selecting algorithms is using simulation, with many available datasets, such
as the public Virtual KITTI 2.0 (Gaidon et al., 2016) and SYNTHIA (Johnson-Roberson et al., 2017),
to provide testing environments. While it has been shown that performance of models in simulation
can be quite different than in the real world, the performance trends and failure modes of models
still hold (Veeravasarapu et al., 2015). Higher fidelity physical modeling can be a solution here and
is described by the various major, commercial, autonomous car developers (Argo AI, 2019; Baidu
AI, 2017; Bigelow, 2019; Madrigal, 2017; Nvidia, 2018; Reynolds, 2019), but can require significant
resources and effort to capture the variation of the real world adequately, which is important for
algorithms that are looking for complex patterns.

That level of realism can also be achieved without as much developmental scope or simulation
expertise by starting from real images and augmenting them with simulated physical effects. This
approach can also show unique characteristics of the target sensor. This type of simulation shows
significant performance improvements over more traditional augmentation techniques (Volk et al.,
2019) or normalization methods, such as dehazing (Sakaridis et al., 2018). More accurate physical
modeling has also enhanced other vision tasks such as 3D dense registration (Meilland et al., 2013)

2.3. Adversarial
Another concern explored in recent papers is whether adversarial methods can be applied in the
real world to produce objects that would be misinterpreted by the robot. Researchers have found
deep networks to be quite susceptible to adversarial attacks due to batch normalization (Galloway
et al., 2019) and inherent properties in datasets (Ilyas et al., 2019). Kurakin et al. (2018) showed
that printing out adversarial mutations of images still results in misclassification. Eykholt, Evtimov,
Fernandes, Li, Rahmati, et al. (2018) and Eykholt, Evtimov, Fernandes, Li, Song, et al. (2018) took
this further and showed its robust outdoor applicability to stop sign classification. Athalye et al.
(2018) then showed that 3D printed objects could have the same effects from a wide range of views.
Wu et al. (2020) also considers adversarial attacks that can be physically realized and proposes a
training approach to increase robustness, though only to some classes of such attacks. Furthermore,
training on adversarial examples in an attempt to be robust to attacks tends to reduce accuracy on
the nominal performance and increase training time (Raghunathan et al., 2019).

However, these attacks are most successful on classification networks or when white-box access
to the network is available, but not as successful or transferable to networks for detection without
internal model access. In addition, naturally-occurring phenomena pose a much larger obstacle to
fielding robotic systems. Pezzementi, Tabor, Yim, et al. (2018) showed examples of situations where
nearly imperceptible natural image modifications can still result in dramatic perception changes.
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2.4. Multiple Criteria Decision Making
One field we take inspiration from is Multiple-Criteria Decision Making (MCDM). In MCDM there
are techniques for analyzing problems with multiple design variables and, notably, multiple criteria
or goals. These analyses readily acknowledge that goals may be in conflict. For an autonomous
vehicle, the safest course is to stay in place; the most productive is to rush headlong along one’s
path. One basic concept from MCDM that has an easy mapping to robotics is that decision making
has two spaces of interest: the decision space and the objective space. These can be easily mapped
to the robotics concepts of the configuration and task space. The decision space is the collection of
variables one controls directly. For a vision system this could include the threshold for a detection
to be considered valid. For a planning system, this may include cost function parameters. Like the
configuration space, the decision space is the set of parameters under the designer’s control, but
does not represent the actual goals. The objective space, in contrast, contains the objectives of
interest. In control or planning, this corresponds to the task space. In autonomous system design, the
objectives are often conflicting criteria representing safety and efficiency. In our work, we illustrate
our techniques on a simple 1D decision space, a classifier decision threshold and several 2D objective
spaces. One observation from MCDM, which simplifies work in higher dimensional spaces, is that
we only need to consider non-dominated alternatives. If a particular set of decision variables leads
to worse performance in all objectives, it can be immediately removed. In real systems, there are
parameterizations where a change in one variable improves both safety and efficiency, but we can
focus our attention on the Pareto Frontier, the manifold where we can only improve one objective
at the cost of another. The same approach can be applied to multi-dimensional decision spaces by
exploring the Pareto frontier that results in the chosen objective spaces. For an example of MCDM
ideas applied directly to robotic control problems, consider Ariizumi et al. (2016).

2.5. Making safer decisions
For an autonomous vehicle, the safest course is to stay in place; the most productive is to rush
headlong along one’s path. This trade-off illustrates a fundamental principal of robotics, that control-
ling a vehicle requires a careful consideration of what it means to operate safely. There is extensive
work on robot decision making that considers robustness in the context of safety. Since our focus
is on perception, we provide only a short summary of that work. While traditional Markov Deci-
sion Processes (MDP) focus on long-term reward maximization, our approach is most related to
work on constrained MDPs (Altman, 1999; Dalal et al., 2018) whereby safety-signals (observable
sensor data) must be kept bounded within certain constraints for each state. Modifications such as
this are necessary because in the context of safety we can no longer rely on the greedy pursuit of
reward because what we actually want is to avoid a worst-case state transition with highly negative
consequences. This concept has been used in the context of reinforcement learning (RL) to guide
policies towards those that satisfy state-wise safety constraints (Dalal et al., 2018; Dulac-Arnold
et al., 2021) without the burden of unraveling the unpredictable effects of reward shaping. By
minimizing the triggering of these signals, researchers were able to identify policies describing how
to respond to state transitions appropriately in the context of unexpected failures. However, in our
work we observe that the real-world decision space is often not a complex control policy to avoid
unsafe states but rather a decision about the level of constraint that works best in the context of
real-world data. In our case as in many others the problem of robust safe control is defined first
and foremost not by the optimality of the actions we select but to what extent the system design
properties (decision thresholds for pedestrian detection) can impact policy performance in the wake
of environmental mutations. By representing robust perception in the context of a ROC curve instead
of with success-rate or mean reward (Peng et al., 2018) we show that it is possible to understand
robustness in way that can directly inform these system design choices before, during and after their
deployment.
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3. Motivating application
We demonstrate our approach on a perception module for person detection, used to safeguard a
system that controls an autonomous tractor in an orchard environment. Prior work on such a robotic
system is described in Moorehead et al. (2012) and Stentz et al. (2002); the NREC-AgPD dataset
used for this analysis is introduced in Section 3.2. We expect our approach to generalize across a
variety of robotic system applications and datasets.

3.1. Problem definition
The autonomous tractor (shown in Figure 1) is designed to carry out mowing and spraying operations
in an orchard environment with minimal supervision from a remote operator. The safeguarding
system under evaluation is responsible for ensuring the vehicle comes to a stop if there is a person in
its way, followed by asking a remote operator for help. Other modules in the system handle path
planning for the vehicle, so the safeguarding system’s sole output is a safe speed value that guarantees
the vehicle is able to stop in time for any detected people in its path. As a result, the system must
not only be able to detect people, but also estimate their location relative to the vehicle’s trajectory.

Rephrased in terms of safety invariants, the module’s responsibility is to guarantee that the vehicle
is never in motion within a specified distance (safety radius) of a person. For simplicity, we define
this distance as a path along the ground, between the camera and the person’s centroid, neglecting
further extents of the person or vehicle extremities. This may make small differences in estimated
person-robot distances, but should not affect the gross performance and robustness trends we focus on
in this work. A true safety-critical system would require more rigorous treatment, but we considered
this sufficient to demonstrate our approach.

Note that in this application the safeguarding system is programmed to use a control radius
that is larger than the safety radius. i.e., the control algorithm tries to stay even farther away from
people than would constitute a safety violation. This enlarged radius exists because having a goal
exactly equal to the safety radius effectively guarantees safety violations from the slightest errors in
estimation or control. The difference between them can be viewed as a further safety buffer for the
safeguarding system.

Our evaluation builds upon previous work on this application that includes modeling of the vehicle
behavior in log playback, along with associated ground truth (desired) behavior (Dima et al., 2011).

Figure 1. Tractor with stereo camera setup for motivating application.
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3.2. The NREC Agricultural Person-Detection Dataset
The NREC Agricultural Person-Detection Dataset (NREC-AgPD dataset) consists of stereo video of
people, annotated by 2D bounding boxes, in orange and apple orchards, along with vehicle position
data from RTK GPS. It contains a total of 76k labeled person images and 19k sampled person-free
images, all with associated stereo. The dataset was released to the public in 2017 along with the
publication Pezzementi, Tabor, Hu, et al. (2018). We chose this dataset as an example of a safety
critical application of object detection. It includes diverse examples of dangerous situations where a
person is in the way of an autonomous vehicle.

4. Method overview
Our general approach to robustness evaluation is to obtain real images and associated ground truth
output, mutate the images (discussed in section 5), and monitor how each algorithm’s (which we refer
to as a System Under Test or SUT described in Section 7.1) output changes under these mutations.
A robust SUT’s output should ideally not change under mutation; practically, the change should be
as small as possible.

We train the SUTs on the NREC-AgPD dataset using the default parameters from their respective
publications or source code. The NREC-AgPD dataset’s validation set is used to evaluate training
convergence, at which point we choose the training iteration with the best validation performance for
evaluation. All results presented are computed on the subset of the test set (as per the benchmark
Pezzementi, Tabor, Hu, et al. (2018)) that meets the requirements for the analysis.

In our previous work (Pezzementi, Tabor, Yim, et al., 2018), we demonstrated this approach
using traditional ROC curves, evaluating the robustness of algorithms in terms of how much the
area under the curve changes for inference on mutated images. This technique matches the standard
practice for evaluation of detectors in the research literature and has the advantage of evaluating
a range of possible system configurations. However, it is difficult to define requirements, based on
this metric alone, that represent when a robotic system would be ready for deployment. Its maximal
generality also prevents it from distinguishing between error types, some of which may be more or
less important to a particular application.

We therefore introduce generalizations of the ROC curve that still capture the essential trade-off
between safety and efficiency, but introduce application-specific context that makes them easier to
relate directly to system-behavior requirements.

Figure 2 illustrates observations of key shortcomings of basic ROC curves:

• People close to the vehicle are usually more important to detect than those far away.
• Only people in the vehicle path are relevant to the safety requirements.
• Intermittent detections can be acceptable as long as the vehicle is still able to maintain the

safety requirement.

We therefore introduce context gradually to incorporate performance metrics that account for these
observations:

• 3D locations of people
• The planned vehicle path
• How quickly the vehicle can speed up or stop

The details of the approach are covered in the following sections: Section 5 describes the ways
in which we mutate input images to simulate adverse conditions. Section 6 goes over the way in
which the context mentioned above is incorporated into our data pipeline to facilitate analysis at
several different points. Section 7 describes our input data sources, including both ground truth
and the person-detection algorithms being evaluated. Then Section 8 introduces our novel perfor-
mance/robustness metric, as well as how it can be applied at each context level. This metric operates
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Figure 2. Illustration of the varying importance to detect people in different locations for the sample application,
showing how additional context can change the appropriate performance evaluation.

on general, multi-objective trade-off curves that represent the range of performances one can realize
by varying system configuration, and it ensures that gains under mutation on one objective can not
hide losses on another objective.

5. Mutations
The mutations we use in this work are a subset of those from Pezzementi, Tabor, Yim, et al. (2018),
which we describe in detail here due to their centrality to the approach. We refer to generators of
image perturbations as well as the perturbation itself as “mutations” with two classes: (1) “Simple”
mutations that only require the original monocular image, and (2) “Contextual” mutations that
incorporate additional information, such as high-fidelity depth estimates. We demonstrate the useful-
ness of scene geometry for realistic simulation of two common physical phenomena: haze and defocus.
The presence of both stereo images and continuous video in our dataset allows us to use scene flow
techniques to produce simultaneous estimates of scene geometry and optic flow.

5.1. Simple mutations
5.1.1. Gaussian blur
Blur the image using a symmetric Gaussian kernel with standard deviations of σ = {1.5, 2, 2.5, 3.0}
pixels. This can be seen as a simple approximation of effects such as defocus or material on the lens.

5.1.2. Alpha blend haze
Alpha blend the image with a uniform color, using blending coefficients of α = {0.1, 0.25, 0.5, 0.75}.
We use a gray color similar to fog, h = [205, 208, 211] in RGB, to provide a simple approximation of
haze effects.

5.1.3. Channel drop-out
Simulate channel drop-out by setting the pixel values of various channels to 0. We applied this to the
ch = R, G, B channels in RGB space and the ch = Cb, Cr channels in YCbCr space. This can occur
in real systems if the individual channels are transmitted in separate communication packets. If one
packet is lost, you may still need to operate on the remaining data.
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5.2. Contextual mutations
To calculate the additional information required for the contextual mutations, we estimate depth
throughout every image in the test set by applying Piecewise Rigid Scene Flow (PRSM) (Vogel et al.,
2015), the leading method with a public implementation on the KITTI Scene Flow Benchmark (Menze
& Geiger, 2015). We seed the estimation with some prior knowledge of the vehicle hood location
(which does not move) and rectification artifacts (considered planes at infinity).1 We then refine the
estimated depths using a bilateral solver (Barron & Poole, 2016) to maintain good alignment between
depth and image edges. This provides high-fidelity estimates of depth at every pixel, D(x), for each
image. Performing this on a large dataset is time-consuming, but only needs to be completed once.

5.2.1. Depth-varying haze
We use a uniform haze model that has been widely applied and shown to be effective in haze removal
(He et al., 2011), which models haze as an alpha-blend effect whose alpha term increases with distance
from the camera:

H(x) = I(x) · T(x) + h (1 − T(x)) (1)
T(x) = e−βD(x) (2)

H(x) is an image under the effects of haze. I(x) represents the scene radiance, in our case the original
image, and (·) indicates element-wise multiplication. Scene radiance is attenuated exponentially by
transmission, T(x), as depth increases, shifting it toward the color of the haze, h. Before applying
Equation 2, we smooth D(x) with a Gaussian filter (σ = 2) to soften discontinuity effects. β cap-
tures the density of the haze, which can be converted to a visibility distance, uV , by applying the
Koschmieder formula : uV = 3.912

β . In our experiments, we used a single gray haze color matching
that from Section 5.1.2 and density/visibility values shown in Table 1. 100 m is the lowest visibility
distance reported by NOAA before rounding to “zero” (“Visibility”, 2018), so that is the most extreme
condition we simulate. Sample images of the result are shown in Figure 4.

5.2.2. Defocus
We use a common model of defocus as scattering light by a point-spread-function and distributing
it to many pixels in the image. This spread depends on the depth of the scene point each pixel
normally images. To mutate an image to exhibit defocus, we first compute the spread for all incoming
pixels, then compute the proportion of their color information that is delivered to every other pixel,
g(x, y, D(y)). Then we sum over the effects of each input pixel and normalize.

F(x) =
∑

y I(y)g(x, y, D(y))∑
y g(x, y, D(y)) (3)

Table 1. Parameters used for haze and defocus mutations. Haze
scattering coefficients, β, are shown with resulting visibility dis-
tances, uV . For the defocus mutation, a test was run for every
combination of focus distance, uf , and camera constant, κ, values.
Reproduced from Pezzementi, Tabor, Yim, et al. (2018).

Mutation Variable Values

Haze β 0.04 0.012 0.004
uV 97.8 m 326 m 978 m
h RGB (205, 208, 211)

Defocus κ 2.0 2.8
uf 1 m 2 m 5 m

1 PRSM updates available at https://github.com/vogechri/PRSM/pull/2

Field Robotics, December, 2021 · 1:253–286

https://github.com/vogechri/PRSM/pull/2


262 · Pezzementi et al.

(a) Original Image, I (b) Gaussian Blur, σ = 2 (c) Alpha Blend, α = 0.5 (d) Channel Drop-Out,
Y (Cb)Cr

Figure 3. Simple mutations applied to a sample image from the NREC-AgPD dataset.

uV = 3260 m uV = 978 m uV = 326 m uV = 97.8 m

Figure 4. Example images of different magnitudes of artificial haze applied to the same image as in Figure 3a.
Choice of visibility distances is described in Section 5.2.1.

uf = 1 m, κ = 2 uf = 2 m, κ = 2 uf = 2 m, κ = 3.6 uf = 5 m, κ = 3.6

Figure 5. Example images of artificial defocus on the same image as Figure 3a. These cover some samples from
our two controllable parameters for defocus simulation. uf is the distance at which the camera is focused. κ is the
camera constant. Reproduced from Pezzementi, Tabor, Yim, et al. (2018).

We assume that incoming light is scattered by a 2-dimensional Gaussian point spread function,
g(x, y, D(y)). The mean is the incoming image location, y, and the function is evaluated at the
output image location, x. The standard deviation is the blur radius (Arroyo, 2013), ρ(y), computed
by comparing the focus distance uf to the depth, D(y), of the scene at that image point y and scaling
by a camera constant, κ:

g(x, y, D(y)) = N2(x, Σ(D(y))) (4)
Σ(D(y)) = diag(ρ(D(y))2) (5)

ρ(D(y)) = κ
|D(y) − uf |
D(y) · uf

(6)

Choosing a subset of focus parameters from Pezzementi, Tabor, Yim, et al. (2018), we evaluated
the effects of two values of κ for each of three focal distances. These values are summarized in Table 1.
Mutated image examples are shown in Figure 5.
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5.3. Mild and severe groupings
In the robustness evaluation, we divide the mutations above into “mild” and “severe” groups, based
on the level of degradation that results on the image.

The mutations in the severe group are

• Gaussian blur with σ >= 2.5
• Alpha blend with α >= 0.5
• Haze with uV = 97.8
• Defocus with uf 1 and (κ 2; κ 3.6)
• All channel dropout

and all others are in the mild group.

6. Application implementation
Figure 6 illustrates the way we break down the operations performed by a robotic system, facilitating
analysis at different levels of modularity, with corresponding levels of application context.

6.1. Roboticizer
The first refinement we perform to add context to the data is to transform detections from the
image frame to a robot frame common with the ground truth, by converting the 2D bounding box
coordinates into 3D world locations. This is necessary as our SUTs do not estimate 3D locations
directly (SUTs that produce 3D detections could of course skip this step). This allows for reasoning
about detections in terms of 3D distance, which is more easily tied to robot behavior. We also
standardize strengths of detections across all SUTs to a common reference frame.

Flowchart: Grouped and can be ungrouped and altered: 

Flowchart: Grouped and can be ungrouped and altered: 
 

 

  

 

DATABASE 

(Data Artifacts) 

(Component) 

Per-Image 
2D Detections 
Raw Sensitivity 

Per-Image 
3D Detections 

Normalized 
Sensitivity 

Per-Image 
Distance to 
Violations 

for 
3D Detections 

Normalized 
Sensitivity 

(Data Artifacts) 

 
2D Per-Image 

 
3D Per-Image 

 
3D Path-Aware 

System 
Requirements 

(Components) 

RESULTS ANALYSIS 

Cameras / Detectors 
(Robot Processes) 

(Algorithms) 

2D GT 

[Cit

Obstacle Map 
Generator 

(Component) 

Trajectory 
Generator 

(Component) 

PATHIFIER 

Localizer 

(Component) 

Sensitivity 
Standardizer 

(Component) 

ROBOTICIZER 

Safe Speed 
Generator / 
Controller 

(Component) 

Vehicle 
Dynamics 
Simulator 

(Component) 

CLOSED-LOOP CONTROL SIMULATOR 

Per-Log 
Vehicle Behavior 

ROC Curves 

Distance 
Accuracy 

Safety-Relevant 
Accuracy 

Performance 
Under-Control 

(Data Artifact) 

[Cite your 
source 
here.] 

(Data Artifact) 

[Cite your 
source 
here.] 

3D GT 

[Cit
e 

you
r 

sou
rce 
her
e.] 

Figure 6. Overview of our process for analyzing person detection performance at different levels of application
context: The major robot process components are described in the remainder of Section 6. Intermediate results
are stored in a database, facilitating analysis at different levels, explained in Section 8.
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6.1.1. Localizer
To convert detections from 2D to 3D, we apply a heuristic that reuses the high-fidelity depth estimates
described in Section 5.2 for each image. It would be equally possible to use a real-time method instead
though. To perform the localization we take the median depth of each row, then the median of the
result (approximating overall median) to estimate the depth of each bounding box. This depth is
associated with the box centroid to provide a point position for safety invariate violation calculations.

Note that due to the expense of computing high-quality stereo disparity, we use the depth maps
from the un-mutated images for all localization. It is therefore possible for the mutations to result in
larger performance drops than we observed by degrading localization accuracy as well.

6.1.2. Sensitivity Standardizer
We also perform standardization of sensitivities across SUTs at this stage. Without standardization,
detection strengths for each SUT can have wildly different ranges.2 In order to create a level basis
of comparison, we remap detection strengths to be in terms of each SUT’s predicted false positive
rate, based on a lookup table computed from the non-mutated validation set—called “Standardized
Sensitivity”. This metric provides an important reference point to measure the change in false positive
rate (with associated threshold) when image mutations are applied. It also provides a convenient
space for estimating viable sensitivity ranges for the application, with which many vision researchers
have familiarity from one axis of the standard ROC curve for detection. False positive rates above
one per image are unlikely to be feasible at the system level for this application; the lower end is less
bounded, but rates below 10−4 are unlikely to have acceptable safety for any of the SUTs evaluated.
We do not restrict the range of false positive rates realized by an SUT though; if a detector has a
parameterization that can achieve extremely high false positive rates, we consider it valid.

6.2. Pathifier
In the second stage, we add the context of the planned path of the vehicle. The “Pathifier” module
then checks each detection to determine if it lies within the control radius distance of the path
forward. The process is illustrated in Figure 7. Adding this information about vehicle motion also
makes temporal consistency easier to incorporate.

6.2.1. Trajectory Generator
The Trajectory Generator uses the position information captured within the NREC-AgPD dataset
to establish the vehicle’s path in each log. Later steps in simulation will lock the vehicle motion to
along this path, but allow changes in the speed at which it is traversed. Since every log with a person
ends with the vehicle coming to a stop safely, we extend the path forward 10 m to allow modeling of
the possibility that the vehicle would continue. We do this by fixing the vehicle’s orientation and
translating forward in a direction given by a smoothed estimate of the vehicle’s current motion at
the end of the log3. Although we of course can not evaluate what the system would perceive at these
extrapolated positions, we can use them for establishing where detections lie with respect to the
robot’s path for positions all the way up to the end of the original log. This in turn allows for finer
analysis of detections’ relevance to safety requirements.

2 Different frameworks and implementations use various conventions for representing detection strength, with ranges of
[−∞, ∞], [−1, 1], [0, 1], etc. Even the detections from two networks using a [0, 1] range are typically not comparable,
since these detections do not generally represent true probabilities; this can sometimes be resolved with some post-
processing techniques, such as temperature/Platt scaling (Guo et al., 2017), but probabilities turn out not to be the
most convenient representation for further system-relevant analyses.
3 We fit a cubic spline to parameterize motion along each axis of the path points and then take the derivatives at the
final point as estimate of current direction. This gives values close to the true direction except during strong turns at
the ends of rows; those situations are a small part of the dataset though, and the camera field of view is not wide
enough to fully cover them. A real system would use additional sensors to cover them, which is beyond the scope of
this analysis.
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Figure 7. Pathifier process: Obstacles are expanded by the control radius and checked for intersection with the
vehicle path. The location at which a safety violation would occur is computed, and the “pathified” distance is the
length of the path to this point.

6.2.2. The Obstacle Map Generator
The Obstacle Map Generator compares the locations of all detections in a given image with the
associated path forward to determine if any lie within the control radius. For any that do, it finds the
intersection of the path with a cylinder around the detection with radius given by the control radius.
It then computes the distance along the path to that point, which we call the “pathified” detection
distance.

Assumptions:

• The path from per-image pose data, before interpolation, is densely-sampled enough that
grazing4 the obstacle’s safety radius is not significant. i.e., the safety radius can be enlarged by
an amount, ϵ, to account for this, but ϵ is small enough to be negligible.

• If the position of the most recent image frame is within a detection’s safety radius, then so is the
current robot position. Our vehicle’s viewing geometry should guarantee the next image frame
to also be in the safety radius, and therefore any point along the segment between them to be in
violation as well. If this assumption is violated though, it results in an overly-cautious system,
not a compromise on safety; there is a chance of a loss of efficiency in this rare condition.

6.3. Closed Loop Control
Our final level of application context is simulating closed-loop control using log playback, as in
Dima et al. (2011). This is the level of simulation that most accurately models the robot’s behavior
and provides requirements-level metrics for fielding a system. To achieve this behavior, it requires
modeling the robot’s dynamics as well as defining and implementing a particular controller to govern
its behavior. This integration of the perception system with the the downstream controls system
ultimately captures more accurately how these scenarios affect the whole system behavior.

We use a simple vehicle model with a top speed and linear acceleration with separate maximum
and minimum values. We set max speed, smax, to 3 m/s, matching the speeds used during the
data collection when no obstacles were present. For minimum acceleration, we used the legally
required braking distance for vehicles of the size used during data collection (Transportation, 2019),
with an adjustment for latency to start braking, giving amin = −15 ft/s2 = −4.572 m/s2. We used
amax = 5 ft/s2 = 1.524 m/s2 for max acceleration based on the vehicle and terrain. We chose a
simulation update rate of 50 ms, the smallest increment that still yielded significant differences.

4 We refer to grazing as the case where two consecutive poses are outside the radius, but line between them enters the
radius.
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The Safe Speed Generator is responsible for finding speeds the vehicle may travel without violating
the control radius. The operations of Pathifier simplify it to a one-dimensional control problem. The
generator finds the positive detection with the smallest pathified distance, dp, and determines the
fastest speed that still allows the vehicle to stop (with max braking5) before traversing that distance:

ssafe = min(
√

−2amindp, smax) (7)

For any detections where this can not be achieved (e.g., a sudden detection that is already within
the control radius), safe speed is set to zero.

When both safe speed and vehicle speed reach zero, a stop is recorded. If running on positive logs,
this is the end of the run, but on negative logs, we allow the vehicle to start again. This simulates
an operator intervention where all obstacles from the most recent image have been cleared (which
should not happen on positive logs, where there actually is a legitimate obstacle in view). The vehicle
can then accelerate again from zero speed until encountering the next image, which may or may not
have new obstacle detections. This ensures that all runs will evaluate the full length of the negative
logs, regardless of the frequency of false detections.

The Safe Speed Controller takes as input the current vehicle state and a target safe speed from
the last captured image and simply accelerates/decelerates at the max rate until achieving the target
speed.

We record the vehicle state at each time step of the simulation, which allows for a wide range of
analyses, as described in Section 8.2.3.

Assumptions:

• Changes in the time between images when simulating a different vehicle speed are not significant.
• The camera position is a sufficient representation of vehicle position.
• Consistent yaw rates from the camera perspective are realistic when extrapolating vehicle paths.
• At the rates we are deviating from the original speed, the effects of rotation on vehicle speed

are negligible.

7. Data sources
As illustrated in Figure 6, input detection data for the pipeline can come from different sources,
either the detectors being evaluated or our two different forms of ground truth.

7.1. Systems Under Test (SUTs)
The full set of SUTs evaluated is shown in Table 2. It covers a variety of architectures and li-
braries (with associated training procedures) that display a range of performance and robustness
characteristics, illustrating how our approach can distinguish between them.

Object detectors can be divided into two categories: one-stage and two-stage. One-stage detectors
directly predict bounding boxes and classifications in one forward pass. Two-stage detectors are
composed of a first stage that proposes regions of interest and a second stage that classifies and
refines these proposed regions. The former are more naturally suited to the limited computation of
embedded perception.

The one-stage detectors tested in this work include:

• The Single Shot Detector (SSD) (Liu et al., 2016) meta-architecture with Inception V2, the
ILSVRC 2014 classification and detection winner, as a feature extractor. Inception V2 utilizes
modules that concatenate efficient decomposed filters (Szegedy et al., 2016).

5 This results in an aggressive controller that drives the robot at max speed until about 1 m from a safety violation. In
practice, one would probably want a controller that brakes more softly and therefore reacts from farther away; in the
limiting conditions for the worst-case safety analysis though, it reduces to the aggressive controller described.
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Table 2. List of SUTs evaluated.

SUT Base Library Reference(s)

MS-CNN Caffe Cai et al. (2016)
SSD w/ MobileNet TensorFlow Howard et al. (2017), Huang et al. (2017), and Liu et al. (2016)
SSD w/ Inception TensorFlow Huang et al. (2017), Liu et al. (2016), and Szegedy et al. (2016)
R-FCN w/ ResNet-101 TensorFlow Dai et al. (2016), He et al. (2016), and Huang et al. (2017)
Faster R-CNN w/
ResNet-101 TensorFlow He et al. (2016), Huang et al. (2017), and Ren et al. (2017)
Faster R-CNN w/ Inception

ResNet v2
TensorFlow Huang et al. (2017), Ren et al. (2017), and Szegedy et al. (2017)

Deformable R-FCN MXNet Dai et al. (2016), Dai et al. (2017)
Deformable Faster R-CNN MXNet Dai et al. (2017) and Ren et al. (2017)
YOLOv2 Darknet Redmon and Farhadi (2017)
YOLOv3 Darknet Redmon and Farhadi (2018)
RetinaNet PyTorch Girshick et al. (2018) and Lin et al. (2017)
Faster R-CNN w/ Inception

ResNet FPN
PyTorch Girshick et al. (2018) and Li et al. (2018)

• The Single Shot Detector (SSD) meta-architecture with MobileNet as a feature extractor. Mo-
bileNet is optimized for computational efficiency with filters that are further decomposed
(Howard et al., 2017).

• YOLO v2 which improves on the original YOLO (a variation on SSD run on the Darknet
framework) by adapting anchor boxes, utilizing multi-scale features, batch normalization, and
a number of improvements to training with different resolutions and tasks (Redmon & Farhadi,
2017).

• YOLO v3 improves upon YOLO v2 by separating predictions of objectness and classes, poten-
tially solving a similar issue that RetinaNet’s Focal Loss addresses. Also, the detector adds
residual blocks, high level semantics across scales (similar to Feature Pyramid Networks below),
and multi-scale predictions (Redmon & Farhadi, 2018).

• RetinaNet is a one-stage detector on the Detectron framework (Girshick et al., 2018) with
a Feature Pyramid Network (FPN) and focal loss (Lin et al., 2017). FPN adds higher level
semantic information at all spatial scales. By passing the later layers information back to
earlier higher resolution scales before predictions, performance on smaller objects should be
improved significantly. Focal loss allows the network to gradually focus on the hardest examples
throughout training. This fixes a major problem with one-stage detectors: class imbalance of
foreground and background across all potential locations.

The two-stage detectors tested in this work include:

• Faster R-CNN meta-architecture with Resnet-101. Faster R-CNN uses a region-proposal network
to generate proposed object regions and a box classifier to refine each of these proposals. The
ResNet-101 feature extractor, which won the ILSVRC 2015 and COCO 2015 classification and
detection, uses residual connections to train very deep networks (He et al., 2016).

• Faster R-CNN meta-architecture with Inception Resnet, another feature extractor that enhances
the Inception modules with residual connections and à trous convolutions (Szegedy et al., 2017).
We include both standard and FPN implementations.

• MS-CNN, a modified Faster R-CNN that generates region proposals with multiple scales through
deconvolution of the feature maps, with VGGNet (Cai et al., 2016).

• R-FCN meta-architecture with Resnet-101. The R-FCN meta-architecture shares most of the
classifier stage feature computation across the proposals by cropping in the later steps of the
second stage, significantly reducing computation (Dai et al., 2016).
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• Deformable Convnets enable learned free-form deformation of the sampling grid (Dai et al.,
2017) and ROI pooling. The flexibility of the boundaries helps the model localize non-rigid
objects.

7.2. Ground truth
Key to detection in computer vision are bounding box labels of objects of interest. The NREC-AgPD
dataset used in this work is annotated with standard 2D bounding boxes, which enables standard
detector ROCs. For more contextual metrics, 3D bounding box information is required. We applied
two different techniques for generating ground truth 3D locations.

7.2.1. Human annotation
One source of 3D ground truth we use to evaluate detectors comes from human annotations. We
labeled a subset of the NREC-AgPD dataset with 3D point locations for each labeled person. In order
to label this stereo dataset efficiently and accurately, we developed a process where an annotator only
needed to label a single point in the left image and its corresponding point in the right image for
every stereo frame. These points were then used to determine the depth of the person using stereo
triangulation. This depth was applied to the center of the bounding box to generate its final 3D
position. In order to ensure consistency (and efficiency) in labeling these point correspondences, we
added a few simple enhancements:

• The epipolar constraint was enforced, causing the point in the right image to jump to the
epipolar line.

• A point tracker from OpenCV was integrated, to try to propagate the correspondence through
the log.

• A graph of depths over the log was displayed. Discontinuities in this graph provided guidance
on which correspondences to improve, whether manually or automatically added.

7.2.2. Automatic localization
The other source we use for 3D ground truth is to apply the Localizer module, described in Section 6.1,
to the original 2D bounding boxes. This means that the ground truth is going through the same
process as the detections generated by a SUT. Failures due to the Localizer module are not counted
against the system unnecessarily. For example, if there are holes in the depth maps used by the
Localizer, those holes cause both the localized 2D-to-3D ground truth results and the localized SUT
results to fail in the same way.

8. Performance evaluation
Prior work has focused on generating trade-off (usually ROC or precision-recall) curves using area
under the curve (mAP or average detection rate) with and without mutation to measure robustness.
We base our analysis on related areas under trade-off curves, allowing evaluation of algorithms
across a range of configurations, so that one can defer final configuration tuning to a later stage of
the design process. We introduce a variety of ways to generate trade-off curves: we begin with the
standard ROC curve that predominates in the previous literature (ROC A, in this section), then show
a minor modification of it that is more consistent with those that follow (ROC B , in Section 8.1), then
introduce new trade-off curves that incorporate more system-level context (in Section 8.2). Finally,
Section 8.3 goes over new metrics for comparing baseline to mutated curves, which can be applied to
any of these curves.

The trade-off curves in this work each measure safety on one axis and efficiency on the other
and sweep across module configurations (in our case detection thresholds) to realize points along a
curve. Safety is some measure of how low we can drive the probability of an injury to a person that
encounters the system. Efficiency is a measure of how much of the total operation of the system is
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spent doing useful work (instead of slowing or stopping needlessly). This definition of efficiency is
similar to that of Hollnagel (2009) from the risk analysis literature, but we choose not to adopt their
opposite trade-off of thoroughness, since that applies to safety focused effort performed before the
system is deployed. When we are discussing these trade-off curves, we will also refer to “performance”,
which consists of overall behavior combining safety and efficiency, usually measured by area under
the curve.

A standard ROC, denoted ROC A, is a valid and very common type of trade-off curve to use for
such analysis. This is the metric used in the official benchmark for the dataset. Typically, the y-axis
shows detection rate (recall), and the x-axis shows the average false detection rate per image, given
by a ratio of total false positives to total images:

FPRA =
∑nI

i=1 nFPi

nI
(8)

In that case one can use recall directly for the safety axis, and one can obtain an efficiency value by
inverting the false detection rate:

EROCA
= 1 − min(FPRA/FPRmax, 1) (9)

Since the false positive rate is unbounded, we impose a ceiling of FPRmax, a rate beyond which the
resulting system efficiency is impractical; we use FPRmax = 0.1 in our implementation.

8.1. ROC formulation
We introduce our traditional ROC variant, ROC B , consisting of two modifications, for consistency
with the approach in the other trade-off curves that follow: we only measure false detections on
images from negative logs, and we only keep track of the strongest false detection per image.

We focus on negative logs to evaluate the effects of false detections (performance degradation),
since these more closely resemble typical operating conditions, where optimal behavior is easy to
model and all detections are known to be spurious. False detections also occur in positive logs of
course, but it is more difficult to disentangle their effects from those of true (possibly mis-localized)
detections in an automated way. That being said, the positive logs are used in this method to evaluate
safety in terms of ground truth locations. The other metrics that follow also use this approach of
evaluating safety on positive logs and efficiency on negative logs.

Switching to evaluating a single false positive per image means a change in the meaning of false
positive rate: instead of representing expected number of false detections per image, it becomes the
probability of any false detection in an image:

FPRB =
∑nI

i=1 1(nFPi)
nI

(10)

where 1(x) is a step function. It also moves us closer to the more contextual trade-off curves, where
the effect of the strongest detection on efficiency of a particular parameterization tends to dominate
weaker ones’.

We then compute efficiency in the same way as 9, but with the modified way of measuring false
positive rate:

EROCB
= 1 − min(FPRB/FPRmax, 1) (11)

Most performance metrics in the following section use the same approach to compute E, just with
different ways of measuring the false positive rate. We include results for both ROC A and ROC B to
better understand the effects of context that later trade-off curves introduce, as well as to separate
them from the modifications made between ROC A and ROC B .
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8.2. Analysis at different context levels
Incorporating more context will bring the analysis closer to real-world levels, but requires more
information about the system to be simulated or captured, along with associated development cost.
Analyzing robustness at intermediate context levels helps with understanding trade-off between these
factors.

8.2.1. Localizer
After localizing detections to 3D locations, we can categorize detections in terms of distance to
the vehicle, which often have a different cost. In addition, we can incorporate distance into a 3D
localization metric.

Our sample metric at this stage marks detections as being correct if they are within 1 meter of the
location marked in ground truth, instead of using IoU as in the traditional ROC. It also establishes a
range of distances from 0 to 10 meters to focus on. Safety is evaluated only on images where the
ground truth location falls within that range, and productivity is evaluated only on detections (the
strongest per image) within that range. This removes far-away people from the evaluation, since they
will not affect system behavior in this application.

8.2.2. Pathifier
After running data through Pathifier, it is much easier to evaluate whether an image contains ground
truth or detections that are critical to the behavior of the system (they intersect with the robot’s
path), and that level of criticality is easier for engineers to map back to system requirements.

We start to incorporate temporal information at this stage. To focus on the detector and avoid
analyzing the large space of tracking solutions (though this may be an appropriate direction for some
systems), we distill the salient detector properties into this metric. Temporal consistency is analyzed,
depending on how far ahead a person/detection is and therefore how urgent it is to react to. We
establish two bins of “pathified” distance to a safety violation: strict at a distance of [0 − 2) meters
and lenient at a distance of [2 − 5) meters. The strict bin is based on the approximate stopping
distance of the vehicle when running at full speed, so missed detections or false detections there are
likely to lead to safety violations or hard braking respectively. The latter bin corresponds to situations
where there is a bit more time to react, but one would want the robot to begin slowing down for
a smooth stop, and false detections could lead to erratic braking. As above, we evaluate safety in
terms of what ground truth locations in positive log images fall within these bins and efficiency in
terms of false positives on negative log images within these bins.

In the strict bin, the system must get everything correct. Any missed detections count against the
recall rate, and any detections on negative logs count as false positives, again based on the strongest
detection per image. Detections on positive images are considered correct from a safety perspective
as long as they have pathified distance less than or equal to the ground truth. i.e., the system would
respond to them at least as conservatively as the ground truth requires.6

In the lenient bin, the system is allowed more leeway since there is more time available to react,
thus only consecutive mistakes are counted. i.e., a miss is only counted for a frame in this bin if
there was also a miss in the previous frame, and detections on negative images are only counted as
false positives if there was also a detection in that range in the previous frame.7 The results from the
two bins are fused into a single evaluation of sensitivity for a match or false positive per image and
aggregated.

6 This does allow for “lucky” false detections that would lead to desirable stops to make the system be considered
more safe. This effect is legitimate though, and it is assumed that these should also manifest on negative logs and
result in a trade-off in efficiency.
7 Note that the consecutive false detections need not have any association between them; it is enough that two occur
in a row, and it is counted as the strength of the weaker of the two.
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The end result is a metric that focuses evaluation on the situations most critical to system behavior,
but that avoids the complexities and many of the explicit choices required for the closed loop control
approach that follows.

8.2.3. Closed Loop Control
We evaluate each SUT at 100 Standardized Sensitivity levels. These range from 10−4 to 1 expected
false positives per image, to produce points on the trade-off curves expected to be in the relevant
range. Note that this corresponds to particular sensitivity values for the SUT which result in those
false positive rates under nominal conditions, but they may produce entirely different false positive
rates under mutations.

Both safety and efficiency are measured by comparing behavior against a ground truth system,
which uses the same control logic, but operates on ground truth data for person locations. Safety is
measured as the portion of logs in which the SUT comes to a stop no later than the ground truth
system. Efficiency, E is measured in terms of the relative time for the system to traverse each log
under control, tSUT, compared to the ground truth’s traversal time, tGT:

P =
∑

tGT∑
tSUT + νnSSUT

(12)

nSSUT is the number of times an SUT comes to a stop in a log, and ν is an associated cost for
stops. Because of the restart logic described in Section 6.3, tSUT evaluates the same path length in
all runs, so an over-sensitive system could produce many stops. In some applications, stops require
intervention that may be very expensive, leading to a high value for ν. In our experiments, we set ν
to zero, but starting again from zero speed still has impact on tSUT that lowers E.

Many other metrics would be possible for either axis, depending on the specific priorities of an
application. For instance, efficiency might depend more on the count of full stops (requiring human
intervention) than speed, or safety might differentiate between classes of stops at different distances
to a person.

8.3. Robustness metrics
One common way to decide if a system is robust is to consider how its performance decays under
mutation. In our previous work (Pezzementi, Tabor, Yim, et al., 2018), we compared the area under a
detection trade-off curve, such as ROC or Precision-Recall, before and after mutation. This approach
is common in the literature (von Bernuth et al., 2019; Michaelis et al., 2020; Pezzementi, Tabor, Yim,
et al., 2018; Volk et al., 2019; Zhang & Wang, 2019), as discussed in Section 2.1. Notably, in Figure 9,
we see a trade-off curve where this method provides a good estimate of expected system performance:
the area for the SUT on the baseline data, in solid green, was 0.734, but performing a mutation
results in a trade-off curve, in dashed magenta, with an area of 0.678. However, comparing these
areas can often hide important changes in system behavior. For instance, Figures 10 and Figure 8
show how the trade-off curve can change without significantly affecting the area. In Figure 11 (and
to a lesser extent Figure 10), we see that the area under the curve can even increase.

8.3.1. Worst case robustness
Instead of comparing the area under the curve for the baseline and mutated test set, we propose
looking at the area of Robustness ROC, the worst case detector performance for that mutation.
In the worst case, we consider whichever condition leads to the worst performance for a particular
detector and threshold, for both safety and efficiency values. For two input trade-off curves, RX

(typically Baseline and mutated) with associated safety, S(X, τ), and efficiency, E(X, τ), at each
sensitivity, τ , the Robustness ROC is given by

S(RobustnessROC (RA, RB), τ) = min(S(RA, τ), S(RB , τ)) (13)
E(RobustnessROC (RA, RB), τ) = min(E(RA, τ), E(RB , τ)) (14)
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Figure 8. Example trade-off curves (MS-CNN on channel dropout, G from RGB) using the Pathifier evaluation.
Note how our new worst case detector curve, in dotted black, uses the efficiency and safety metrics from the
baseline and mutated detectors, depending on the sensitivity. Symbols along each curve correspond to particular
values of sensitivity, illustrating how the safety and efficiency values are derived from this underlying parameter.
Sensitivity range depends on the detector; in this case MS-CNN had a set of parameters producing hundreds of
false positives per image.
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Figure 9. Example trade-off curves (SSD with MobileNet on Gaussian blur σ = 1.0) using the Closed Loop
Control evaluation. Note that the area for the mutated detector is equal to our new worst case detector area.
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Figure 10. Example trade-off curves (Faster R-CNN with ResNet-101 on channel dropout, Cb from YCbCr)
using the Closed Loop Control evaluation. Note that the area for the baseline detector is nearly equal to the area
of the mutated detector but our new worst case detector area detects a change in robustness.
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Figure 11. Example trade-off curves (SSD with Inception on Gaussian blur σ = 1.0) using the Roboticizer
evaluation. Note that the area for the mutated detector is much greater than the area of the baseline detector,
but our new worst case detector does not unfairly credit this improved performance. Sensitivity range depends on
the detector, in this case SSD had a set of parameters with tens of false positives per image.

Algorithm 1. Robustness ROC algorithm. Shows algorithm for getting worst case ROC, or Robustness
ROC from two independent ROCs with sensitivity values that do not correspond. prev and next are functions
that return the nearest Sensitivity in a ROC for the input Sensitivity, in the forward and reverse direction,
respectively. When the Sensitivity exists in the ROC, both simply return that value. In absence of a
Sensitivity value lower or greater than the query value, respectively, they return the lowest possible value
for safety or efficiency.

Result: Robustness ROC, TOworst
Input:
TOA ⊂ {G1A, G2A, SA}.
TOB ⊂ {G1B , G2B , SB}.
for S in SA ∪ SB do

S(RobustnessROC (RA,RB), τ) = min
(

S(RA, prevA(τ)), S(RB , prevB(τ))
S(RA, nextA(τ)), S(RB , nextB(τ)))

)
E(RobustnessROC (RA,RB), τ) = min

(
E(RA, prevA(τ)), E(RB , prevB(τ))
E(RA, nextA(τ)), E(RB , nextB(τ))

)
end

Robustness ROC can then be viewed as a pessimistic lower bound on the performance across these
two conditions, but with the important guarantee that gains in one objective do not offset losses in
another; system performance must be maintained in all objectives (or show pareto improvements) to
avoid the area under the Robustness ROC decreasing.

Consider Figure 8, on the left side of the figure, we show the relationship between each of our
objectives, safety and efficiency, and the sensitivity of the detector. The black dashed line shows the
worst case choice for each sensitivity, on each of these objectives. Note how on efficiency, we use
the performance of the baseline detector for some regions of the curve, and the performance of the
mutated detector in others, depending on which is worse. On the left side, we see how these can be
combined to create a new curve, Robustness ROC. For illustration, we use markers on the curves
to show corresponding sensitivity values. Returning to Figure 11, we see that the area of this new
trade-off curve is equal to the original area. In fact, the worst case area will always be between 0 and
the baseline detector area. If we consider robustness to be the ratio of these areas, it is guaranteed to
be between 0 and 1.

Depending on your choice of evaluation, it is very likely that the sensitivities will not have the
same values for the baseline and mutated trade-off curves. In this case, you will need to compare the
safety and efficiency of the closest available sensitivities. This generalization is shown in Algorithm 1.
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We avoid more standard interpolation of the data, since it introduces new performance values that
may not be realizable.8 For the best accuracy, it is therefore important to have data that cover the
range of S-E trade-off values well; otherwise these interpolations and (particularly) extrapolations
can have a large impact on area under the curve. Nonetheless, in the absence of such data, the metrics
will not produce over-confident, unsafe conclusions.

8.3.2. Any mutation robustness
This same Robustness ROC process of taking the minimum in objective space of each value in the
decision space to create a new curve can also be applied repeatedly, in order to build an understanding
of the worst-case trade-off for combinations of mutations. This worst case curve then has area less
than or equal to the area of any of the baseline or mutated curves. Since the process consists of
taking minima, applying it iteratively is equivalent to taking the minimum over the entire set.

We evaluate two versions of this metric, with different sets of possible mutations: “Any” includes
all mutations computed in the set, from both the mild and severe groupings; “AnyMild” includes
only the mild group.

An alternative method for combining performance from multiple mutations was used in Michaelis
et al. (2020), where the areas of each trade-off curve are averaged over all mutations and all severity
levels. Conceptually, instead of considering the worst-case mutation for a detector and threshold
combination, this is considering a world where each mutation is equally likely to occur. In the
case where one knows precisely how common each condition will be in the field, one can take an
alternative approach: For every sensitivity value, one can compute average false positive and false
negative rates weighted by their probability. Then the area under the curve formed by these points
provides an estimate of overall average performance, which could be an informative metric as well;
however, we considered the requirement to know the distribution of conditions overly burdensome.
In contrast, the Robustness ROC provides a useful lower bound on performance without adding
additional parameters.

9. Results
Table 5 shows the performance of all Systems Under Test under all mutations, using a traditional ROC
performance metric and a worst-case robustness metric. The first row shows baseline performance on
unmodified images, while subsequent rows show the mutated performance as evaluated by Robustness
ROC, as described in Section 8.3.1. Numbers in each cell show the area under the worst-case curve,
while colors show the robustness score, the ratio of that area to the baseline (equivalent to rPC from
Michaelis et al. (2020)). This is similar to the results table of Pezzementi, Tabor, Yim, et al. (2018),
except using the new Robustness ROC metric. One can see general robustness trends by perusing the
colors of columns; robust Systems Under Test feature predominantly warm colors throughout, while
cool colors highlight robustness problems. Note that all of these colors are relative to the baseline
performance though, so an SUT with a high baseline score and severe degradations under mutation
may still outperform a more robust system with a lower baseline score.

Tables 6–10 show the equivalent values for the remaining performance metrics. Tables 5 and 6
show that values for ROC B do not change substantially from ROC A. Performances go up slightly,
with rankings and robustness trends largely maintained. Tables 7 and 8 show that performance trends
also do not change significantly when switching between the 2D and 3D versions of ground truth;

8 Consider, for example, the extreme case of a detector with detections for every person, but which ranks all candidate
detections in exactly the wrong order: all false positives have higher strength than true detections. We may have
only tested enough to know the trivial extreme points, where it can (a) achieve perfect safety with zero efficiency or
(b) achieve zero safety with perfect efficiency. Standard interpolation would assume a performance with half the area
under the curve filled. Our approach would more pessimistically (and in this case correctly) produce zero area under
the curve.
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Table 3. Performance of all single-stage detector SUTs under four different performance metrics.
In each cell, colorization from left to right is for performance on ROCB , Roboticizer, Pathifier,
then Closed Loop Control. Color bars are as in Table 5.
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again, performances go up slightly, but rankings and robustness trends are maintained. Since the
localization process for the 2D ground truth is the same as that used for detections from the Systems
Under Test, this indicates that inaccuracies in this process are not a major factor in performance.

Tables 3 and 4 also aggregate a metric from each context level for easier comparison of overall
trends. The two-stage detectors in our set generally perform better than the single-stage detectors on
unmodified images, with the notable exception of RetinaNet, which scores best overall. The ranking of
baseline scores is fairly stable across context levels, though performance values grow closer together.

The two-stage detectors also show generally greater robustness trends. All of the single-stage
detectors’ performance collapses under the channel dropout, though YOLOv3 and RetinaNet perform
better than the rest. The Faster R-CNN architectures show the greatest robustness both to mild
and severe mutations, with Faster R-CNN with Inception ResNet v2 showing much less drop in
performance than other systems in almost all cases. The FPN version of Faster R-CNN with Inception
ResNet v2is strikingly less robust than the standard version, though the difference could easily be
more due to differences in the implementations’ default training configuration than to the different
architectures.

Within Tables 3 and 4, performance generally increases when going from left to right within each
cell (colors growing lighter for baseline scores and warmer for robustness scores), as the additional
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Table 4. Performance of all two-stage detector SUTs under four different performance metrics, using the same
scheme as Table 3.
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context filters out cases that are less relevant to system behavior and also tend to be more difficult.
Performances thereby become more compressed at higher context levels, mitigating some of the more
severe drops in performance under mutation.

Most notably, the choice of best-performing classifier may change as more context is added,
depending on one’s level of concern with robustness, and to what level of severity. For instance, at the
outset, the FPN-based detectors appear the strongest performers, with the highest baseline scores.
RetinaNet and YOLOv3’s scores (particularly at the lowest context level), suggest a single-stage
detector with a lower computational budget might be sufficient. Once robustness is considered, the
choice between these and Faster R-CNN with Inception ResNet v2 becomes less clear-cut; YOLOv3
and RetinaNet still do slightly better on mild mutations, but do much worse on severe mutations.
Then as more context is added, baseline scores draw much closer together, and Faster R-CNN with
Inception ResNet v2 passes those two on mild mutations as well. However, if mild mutations are your
biggest concern, Deformable Faster R-CNN performs best on them at all contexts levels, though it
does not lead at any level on severe mutations.
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Table 5. Performance under ROCA, based on area under a traditional ROC curve. The color bar at top right is
for baseline scores, and the one at bottom right is for robustness with respect to each baseline score.
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Table 6. ROCB performance metric.
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Table 7. Roboticizer performance metric with 3D ground truth.
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Drop Cr (YCbCr) 0.02 0.00 0.40 0.40 0.33 0.16 0.33 0.53 0.46 0.70 0.35 0.00

Drop R (RGB) 0.25 0.07 0.01 0.56 0.34 0.58 0.65 0.69 0.68 0.76 0.66 0.12
Drop G (RGB) 0.06 0.04 0.37 0.40 0.67 0.48 0.61 0.14 0.65 0.79 0.63 0.02
Drop B (RGB) 0.14 0.16 0.48 0.55 0.62 0.44 0.53 0.59 0.52 0.76 0.56 0.12

Haze (uV 978m) 0.55 0.47 0.78 0.83 0.88 0.82 0.82 0.77 0.72 0.81 0.85 0.83
Haze (uV 326m) 0.55 0.46 0.77 0.83 0.88 0.82 0.82 0.76 0.72 0.81 0.85 0.83

Haze (uV 97.8m) 0.51 0.40 0.72 0.82 0.87 0.78 0.82 0.72 0.72 0.80 0.85 0.81
Defocus (uf 1; κ 2.0) 0.42 0.40 0.71 0.78 0.80 0.76 0.77 0.66 0.69 0.76 0.82 0.62
Defocus (uf 2; κ 2.0) 0.54 0.46 0.78 0.82 0.86 0.81 0.82 0.75 0.72 0.81 0.84 0.80
Defocus (uf 5; κ 2.0) 0.55 0.47 0.79 0.83 0.88 0.82 0.82 0.77 0.73 0.81 0.84 0.83
Defocus (uf 1; κ 2.8) 0.29 0.38 0.03 0.02 0.72 0.71 0.73 0.60 0.67 0.71 0.79 0.51
Defocus (uf 2; κ 2.8) 0.53 0.44 0.77 0.82 0.85 0.80 0.80 0.74 0.72 0.80 0.84 0.77
Defocus (uf 5; κ 2.8) 0.54 0.47 0.79 0.83 0.88 0.82 0.82 0.77 0.72 0.81 0.84 0.83

Any 0.00 0.00 0.00 0.02 0.03 0.14 0.33 0.00 0.45 0.65 0.35 0.00
AnyMild 0.31 0.30 0.46 0.72 0.74 0.71 0.74 0.61 0.67 0.72 0.80 0.53
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Table 8. Roboticizer with 2D ground truth.
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Baseline 0.58 0.50 0.83 0.88 0.94 0.86 0.87 0.82 0.76 0.86 0.90 0.88
Gaussian Blur (σ 1.5) 0.47 0.44 0.76 0.83 0.87 0.81 0.83 0.73 0.73 0.81 0.88 0.72
Gaussian Blur (σ 2.0) 0.35 0.42 0.72 0.76 0.80 0.76 0.79 0.67 0.71 0.76 0.85 0.57
Gaussian Blur (σ 2.5) 0.22 0.43 0.68 0.70 0.70 0.72 0.76 0.62 0.68 0.72 0.82 0.43
Gaussian Blur (σ 3.0) 0.16 0.39 0.61 0.63 0.60 0.68 0.72 0.56 0.66 0.68 0.78 0.34

Alpha Blend (α 0.1) 0.57 0.45 0.66 0.87 0.93 0.85 0.87 0.79 0.76 0.85 0.90 0.87
Alpha Blend (α 0.25) 0.49 0.39 0.63 0.86 0.93 0.81 0.87 0.72 0.76 0.84 0.90 0.85
Alpha Blend (α 0.5) 0.16 0.28 0.54 0.82 0.90 0.71 0.87 0.61 0.76 0.82 0.90 0.80

Alpha Blend (α 0.75) 0.00 0.00 0.34 0.73 0.81 0.42 0.86 0.52 0.69 0.76 0.87 0.66
Drop Cb (YCbCr) 0.07 0.00 0.00 0.47 0.04 0.31 0.45 0.55 0.60 0.70 0.45 0.00
Drop Cr (YCbCr) 0.02 0.00 0.40 0.40 0.32 0.16 0.33 0.52 0.46 0.73 0.36 0.00

Drop R (RGB) 0.28 0.08 0.01 0.56 0.36 0.58 0.67 0.73 0.71 0.80 0.68 0.12
Drop G (RGB) 0.06 0.05 0.37 0.40 0.71 0.49 0.65 0.15 0.69 0.84 0.65 0.02
Drop B (RGB) 0.14 0.16 0.48 0.56 0.63 0.44 0.54 0.59 0.53 0.79 0.57 0.12

Haze (uV 978m) 0.58 0.50 0.82 0.87 0.94 0.86 0.87 0.81 0.76 0.85 0.90 0.88
Haze (uV 326m) 0.58 0.48 0.81 0.87 0.94 0.86 0.87 0.80 0.76 0.85 0.90 0.88

Haze (uV 97.8m) 0.53 0.42 0.76 0.86 0.93 0.82 0.87 0.75 0.75 0.84 0.90 0.86
Defocus (uf 1; κ 2.0) 0.46 0.43 0.77 0.82 0.86 0.80 0.82 0.73 0.72 0.80 0.86 0.66
Defocus (uf 2; κ 2.0) 0.56 0.48 0.82 0.87 0.92 0.86 0.87 0.80 0.76 0.85 0.90 0.85
Defocus (uf 5; κ 2.0) 0.58 0.50 0.83 0.87 0.94 0.86 0.87 0.81 0.76 0.85 0.90 0.88
Defocus (uf 1; κ 2.8) 0.32 0.40 0.03 0.03 0.77 0.74 0.78 0.67 0.70 0.75 0.84 0.54
Defocus (uf 2; κ 2.8) 0.55 0.47 0.82 0.87 0.90 0.85 0.85 0.79 0.76 0.84 0.89 0.82
Defocus (uf 5; κ 2.8) 0.57 0.49 0.83 0.87 0.94 0.86 0.87 0.81 0.76 0.85 0.90 0.88

Any 0.00 0.00 0.00 0.03 0.03 0.14 0.33 0.00 0.46 0.67 0.36 0.00
AnyMild 0.31 0.31 0.51 0.76 0.80 0.75 0.79 0.67 0.70 0.76 0.85 0.57
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Table 9. Pathifier performance metric.
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Baseline 0.62 0.56 0.88 0.87 0.95 0.88 0.89 0.85 0.79 0.88 0.93 0.90
Gaussian Blur (σ 1.5) 0.47 0.44 0.83 0.85 0.89 0.83 0.86 0.76 0.76 0.83 0.91 0.74
Gaussian Blur (σ 2.0) 0.36 0.43 0.79 0.79 0.82 0.79 0.83 0.70 0.74 0.78 0.90 0.60
Gaussian Blur (σ 2.5) 0.26 0.44 0.77 0.72 0.73 0.74 0.79 0.66 0.71 0.74 0.87 0.46
Gaussian Blur (σ 3.0) 0.36 0.43 0.72 0.66 0.65 0.70 0.65 0.60 0.68 0.69 0.84 0.36

Alpha Blend (α 0.1) 0.61 0.51 0.72 0.86 0.95 0.87 0.89 0.82 0.79 0.87 0.93 0.89
Alpha Blend (α 0.25) 0.55 0.44 0.71 0.83 0.94 0.83 0.89 0.75 0.79 0.85 0.93 0.87
Alpha Blend (α 0.5) 0.31 0.30 0.62 0.80 0.91 0.74 0.89 0.64 0.79 0.84 0.92 0.83

Alpha Blend (α 0.75) 0.03 0.00 0.43 0.73 0.83 0.44 0.89 0.55 0.72 0.78 0.92 0.69
Drop Cb (YCbCr) 0.20 0.00 0.00 0.49 0.03 0.30 0.45 0.63 0.63 0.70 0.44 0.00
Drop Cr (YCbCr) 0.17 0.00 0.52 0.41 0.33 0.16 0.33 0.58 0.49 0.74 0.35 0.00

Drop R (RGB) 0.48 0.13 0.05 0.58 0.39 0.60 0.68 0.84 0.74 0.81 0.70 0.12
Drop G (RGB) 0.15 0.11 0.47 0.43 0.75 0.49 0.75 0.72 0.72 0.85 0.72 0.04
Drop B (RGB) 0.41 0.20 0.60 0.58 0.65 0.46 0.55 0.64 0.56 0.80 0.58 0.14

Haze (uV 978m) 0.62 0.55 0.87 0.87 0.95 0.88 0.89 0.84 0.79 0.88 0.93 0.90
Haze (uV 326m) 0.62 0.54 0.86 0.85 0.95 0.87 0.89 0.83 0.79 0.87 0.93 0.90

Haze (uV 97.8m) 0.54 0.46 0.82 0.82 0.94 0.84 0.89 0.78 0.79 0.86 0.93 0.88
Defocus (uf 1; κ 2.0) 0.46 0.44 0.83 0.84 0.87 0.82 0.85 0.75 0.75 0.82 0.91 0.68
Defocus (uf 2; κ 2.0) 0.59 0.51 0.87 0.87 0.94 0.87 0.89 0.83 0.79 0.87 0.93 0.88
Defocus (uf 5; κ 2.0) 0.61 0.55 0.88 0.87 0.95 0.88 0.89 0.85 0.79 0.88 0.93 0.90
Defocus (uf 1; κ 2.8) 0.56 0.56 0.12 0.03 0.79 0.76 0.81 0.69 0.73 0.77 0.89 0.56
Defocus (uf 2; κ 2.8) 0.62 0.56 0.87 0.87 0.92 0.87 0.88 0.82 0.78 0.86 0.92 0.84
Defocus (uf 5; κ 2.8) 0.62 0.56 0.87 0.87 0.95 0.88 0.89 0.84 0.79 0.88 0.93 0.90

Any 0.00 0.00 0.00 0.03 0.03 0.14 0.33 0.39 0.49 0.68 0.35 0.00
AnyMild 0.34 0.32 0.56 0.78 0.81 0.76 0.83 0.70 0.74 0.78 0.89 0.59

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Table 10. Closed Loop Control performance metric.
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Baseline 0.73 0.67 0.86 0.85 0.89 0.87 0.85 0.87 0.79 0.88 0.89 0.84
Gaussian Blur (σ 1.5) 0.66 0.56 0.84 0.80 0.86 0.86 0.84 0.84 0.77 0.87 0.89 0.73
Gaussian Blur (σ 2.0) 0.59 0.53 0.81 0.75 0.83 0.83 0.83 0.83 0.74 0.84 0.89 0.57
Gaussian Blur (σ 2.5) 0.52 0.57 0.78 0.71 0.79 0.79 0.80 0.82 0.73 0.82 0.89 0.49
Gaussian Blur (σ 3.0) 0.52 0.53 0.75 0.66 0.76 0.77 0.79 0.80 0.71 0.80 0.89 0.39

Alpha Blend (α 0.1) 0.72 0.58 0.81 0.85 0.89 0.86 0.85 0.86 0.78 0.87 0.89 0.84
Alpha Blend (α 0.25) 0.67 0.48 0.81 0.84 0.89 0.85 0.85 0.83 0.78 0.87 0.89 0.84
Alpha Blend (α 0.5) 0.61 0.29 0.80 0.85 0.89 0.83 0.85 0.79 0.78 0.86 0.89 0.82

Alpha Blend (α 0.75) 0.44 0.00 0.62 0.77 0.87 0.53 0.84 0.75 0.77 0.81 0.89 0.74
Drop Cb (YCbCr) 0.49 0.01 0.00 0.53 0.05 0.29 0.47 0.76 0.68 0.74 0.47 0.00
Drop Cr (YCbCr) 0.36 0.01 0.59 0.41 0.50 0.15 0.31 0.77 0.51 0.80 0.33 0.00

Drop R (RGB) 0.64 0.22 0.05 0.60 0.56 0.62 0.64 0.85 0.74 0.84 0.72 0.06
Drop G (RGB) 0.32 0.25 0.75 0.41 0.81 0.48 0.72 0.47 0.74 0.86 0.86 0.13
Drop B (RGB) 0.51 0.23 0.66 0.59 0.77 0.46 0.51 0.79 0.60 0.86 0.54 0.12

Haze (uV 978m) 0.72 0.64 0.86 0.85 0.89 0.86 0.85 0.87 0.78 0.88 0.89 0.83
Haze (uV 326m) 0.72 0.59 0.85 0.85 0.89 0.86 0.85 0.87 0.78 0.88 0.89 0.84

Haze (uV 97.8m) 0.68 0.48 0.85 0.85 0.89 0.85 0.85 0.84 0.78 0.87 0.89 0.84
Defocus (uf 1; κ 2.0) 0.65 0.55 0.82 0.77 0.85 0.86 0.84 0.84 0.76 0.86 0.89 0.68
Defocus (uf 2; κ 2.0) 0.72 0.63 0.86 0.84 0.89 0.86 0.85 0.87 0.78 0.88 0.89 0.84
Defocus (uf 5; κ 2.0) 0.73 0.66 0.85 0.85 0.89 0.87 0.85 0.87 0.78 0.88 0.89 0.84
Defocus (uf 1; κ 2.8) 0.57 0.53 0.07 0.02 0.81 0.83 0.82 0.82 0.73 0.82 0.89 0.55
Defocus (uf 2; κ 2.8) 0.72 0.61 0.86 0.84 0.89 0.86 0.85 0.86 0.78 0.88 0.89 0.82
Defocus (uf 5; κ 2.8) 0.73 0.66 0.85 0.85 0.89 0.87 0.85 0.86 0.78 0.88 0.89 0.84

Any 0.15 0.00 0.00 0.02 0.03 0.14 0.29 0.24 0.51 0.70 0.33 0.00
AnyMild 0.51 0.40 0.72 0.75 0.83 0.83 0.83 0.82 0.73 0.83 0.89 0.57
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10. Discussion
By taking a step back, we can look at the larger implications as well as any threats to validity.
Component-level evaluation facilitates the comparison of many models and has enabled fast progress
through instant feedback and sometimes the prestige of a public ranking. However, our work shows
that these improvements may not always propagate to the end system. These models are only parts
of a larger system, and simulating system-level context can avoid suboptimal decisions, despite
limitations on the approximation.

While we advocate adding levels of context earlier in the trade-off and design process, it can take
significant resources to define the other aspects of the system. If these components are not accurately
modeled, the translation from standard, independent, image-level detection metrics, such as mean
Average Precision will not translate accurately into higher level business case and safety metrics.
This can mislead design decisions and trade-offs. However, we argue that bringing in higher level
system metrics is always useful. Over the design life-cycle, modeling accuracy can be refined, and
this iterative refinement forces integration to the front of the developer’s mind, which is important
for effective engineering. This will facilitate the processes of integration and performance verification
by minimizing later surprises.

Our approach is limited to data collections that are safe and practical to collect. This condition
goes hand in hand with the evidence that, even with large datasets, it is difficult to capture all
scenes and relevant challenges, including myriad potential failure cases. Robot sensor data are also
highly temporally correlated and can be expensive to collect and annotate, both of which make it
challenging to achieve broad data variety. There is evidence that these properties lend themselves to
non-robust features, which weakness exposes models to adversarial attacks. However, we believe that
collecting real-world data of these edge case and distribution-shift scenarios is important, independent
of the final perception evaluation method. Thinking through the safety of these scenarios out in the
field during data collection helps guide system decisions and robot control behavior.

Adversarial attacks are not captured by our method currently. As described in Section 2.3, methods
specifically optimizing image-mutations to cause failures in classification networks can often succeed
with imperceptible changes. However, such attacks have not been as successful on networks for
detection or without access to system internals. Model-extraction attacks do not seem like a large
risk to fielded, embedded robotics systems either. Nonetheless, our method can easily incorporate
adversarial attacks. While such attacks seem unlikely, it is hard to quantify the likelihood of any of
these potential failure modes. Why not simply look at the worst-case performance? It can at least
provide a lower bound on performance, and if we achieve our goals with worst-case performance,
engineers deliver a system that is better performing than predicted. However, focusing on just the
worst-case performance can result in the selection of an algorithm with lower average efficiency.

If one has complete knowledge of failure modes and their likelihood, training on such mutations
or attacks can facilitate handling them directly. This will expand the data manifold to cover all the
potential dataset shifts and significantly improve robustness. Alternatively, they can be detected
and mitigated through alerting operators or supervisors. We think augmentation and training on
attacks can help, but there is a training-time cost and nominal performance cost for this. We simply
provide another tool for massaging the different system trade-offs: It should be used in tandem
with augmentation and failure mode detection. There is also a high chance that there still exists a
mutation that is not known—leaving some known mutations held out for use in our method can offer
some insight on how a system performs in these unknown conditions.

Another argument is if one is going to simulate that level of context, one might as well move to full
simulation. This provides full control over scenarios, especially as robots gain more decision making
power. Our method can only handle slowing down of the robot. It cannot model the robot choosing a
different path, or how the other agents sharing the world may react differently. Annotating real-world
data can also introduce errors, which may not be an issue with a well-engineered simulation. However,
fully qualifying and verifying a robot in simulation can be dangerous, as there are many examples of
methods that do not translate well from simulation to reality, as it is infeasible to completely model
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the real world. One should capture as many scenarios in the field as possible, which enables our
methods to work well, and also use simulation in addition to real-world data. Trustworthy ground
truth is imperative to developing robotic systems, and significant effort needs to be in place to
validate it.

Our mutations are only approximations of a subset of difficult cases (Zendel et al., 2015). Aside
from it being unrealistic to accurately model all possible scenarios, the idea of holding out a subset
of mutations from training augmentation and measuring robustness can be viewed as another type
of hold-out set to test generalization and robustness at higher context levels. If two detectors have
similar AUC metrics under impaired scenarios, we believe that our robustness score will better
capture robustness to unknown unknowns.

In the same vein, our chosen object detectors are only a subset of what is available and will be
developed: It is impractical to train and test all conceivable object detectors. We have chosen a number
of popular detectors across complexity and age in hopes to show that our analysis methods are
valuable across detectors. We hope others will start to include measures of robustness and system-level
effectiveness when they develop new detectors.

Our benchmark problem is only one task on one dataset. We are using the largest available off-road,
person-detection dataset that includes the required secondary information for contextual mutations.
We hope that as more robotic applications are deployed in the real world, critical robustness analysis
will be done at every stage for all tasks: from scene understanding in urban environments to odometry
in underground applications.

11. Conclusions and future work
We introduced a new approach to robustness analysis, building on work to mutate images according
to simulations of physical phenomena. We showed how to compare performance on safety-vs-efficiency
trade-off curves, before and after mutation, to measure robustness across a range of algorithm
parameters using a novel metric, Robustness ROC. We demonstrated the approach on a large dataset,
uncovering patterns of algorithm robustness for differing architectures. We believe these techniques
can allow developers to discover and address robustness issues much earlier in the design process.
They can also enable deeper analysis of operational conditions, even without having a physical robot,
whether due to lack of access or because the system has not yet been fielded or even built.

We found that incorporating application context in analysis can both change rankings and connect
results more easily to intuitive system-level behavior statistics. Notably, our work showed how
decisions regarding the best algorithm to apply would change based on robustness priorities—while
recent improvements in fast, single-stage detectors have allowed them to often out-perform two-stage
detectors in the nominal case, our Systems Under Test still show a performance gap in suboptimal
conditions. This result shows the importance of our approach both during component selection and
future performance verification.

There are several opportunities to extend this work for greater reach. One is a deep investigation
of training methods, discussed in Section 2.1, to imbue resilience to data shifts. Additionally, there
are many possibilities for new mutations to test on, including a variety of weather conditions and
problems with camera imaging. One interesting challenge for time-varying phenomena is how to
ensure temporal consistency of effects across video (e.g., ensuring everything moves appropriately
from frame to frame, even as the robot moves); this seems an area where tools from full simulation
could be useful. Designers of real systems have more parameters than just detector sensitivity. For
these systems, our work could be combined with multi-objective optimization to find the trade-off
curve and its area. If the designer has additional objectives besides safety and efficiency, then our
method would require at least the following modifications.

• Algorithm 1 would need to consider nearest neighbors in each dimension
• Area under the curve would need to be replaced with volume or Lebesgue measure, depending

on number of objectives
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• Ratio of volumes may need to be reconsidered as number of dimensions grows.

Another possible direction would investigate how best to combine the results of many experiments.
In several applications (e.g., outside of safety), average-case performance is more relevant than
worst-case performance. This observation introduces challenges, however, in accurately estimating
the likelihood of particular conditions. This analysis has also focused on a single mutation at a time,
but some failures may only appear when mutations occur in combination, so effectively exploring
that combinatorial space remains a challenge. Finally, all of this analysis pertains only directly to
the mutations being applied, the “known unknowns”. However, the robustness results presented here
indicate rather consistent trends across mutations for a particular System Under Test. It should
therefore be possible to extrapolate and reason about robustness to “unknown unknowns” as well.
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Appendix

Table A1. Glossary of terms.

Term Definition

ROC Receiver Operator Characteristic curve, a traditional trade-off curve for measuring the performance of
object detectors

ROCA The standard formulation of the ROC curve that predominates in the previous literature
ROCB The standard ROC curve with two modifications: measure only false detections on images from

negative logs, and evaluating the probability of a false detection in an image rather than the
expected number of false detections per image.

S A measure of safety, one axis of our generalized trade-off curves
E A measure of efficiency, the other axis of our trade-off curves
RobROC Robustness ROC, a derived trade-off curve from comparing behavior in normal conditions to that under

some mutation. It is taken as a pessimistic lower bound on the performance across safety and
efficiency objectives, but with the important guarantee that gains in one objective do not offset
losses in another

SUT System Under Test, an algorithm or entire system that is being tested for robustness
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