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Abstract: For humans and robots to collaborate effectively as teammates in unstructured en-
vironments, robots must be able to construct semantically rich models of the environment,
communicate efficiently with teammates, and perform sequences of tasks robustly with minimal
human intervention, as direct human guidance may be infrequent and/or intermittent. Contempo-
rary architectures for human-robot interaction often rely on engineered human-interface devices
or structured languages that require extensive prior training and inherently limit the kinds of
information that humans and robots can communicate. Natural language, particularly when situated
with a visual representation of the robot’s environment, allows humans and robots to exchange
information about abstract goals, specific actions, and/or properties of the environment quickly and
effectively. In addition, it serves as a mechanism to resolve inconsistencies in the mental models of the
environment across the human-robot team. This article details a novel intelligence architecture that
exploits a centralized representation of the environment to perform complex tasks in unstructured
environments. The centralized environment model is informed by a visual perception pipeline,
declarative knowledge, deliberate interactive estimation, and a multimodal interface. The language
pipeline also exploits proactive symbol grounding to resolve uncertainty in ambiguous statements
through inverse semantics. A series of experiments on three different, unmanned ground vehicles
demonstrates the utility of this architecture through its robust ability to perform language-guided
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spatial navigation, mobile manipulation, and bidirectional communication with human operators.
Experimental results give examples of component-level behaviors and overall system performance
that guide a discussion on observed performance and opportunities for future innovation.

Keywords: robot teaming, human robot interaction, cooperative robots

1. Introduction
The promise of field robots to automate dangerous, dirty, difficult, and/or dull tasks in semi-
structured and unstructured environments has been evident for several decades (Krotkov and Blitch,
1999). Examples include automating underground mine operations (Scheding et al., 1999, 1997;
Roberts et al., 2000; Marshall et al., 2008; Duff et al., 2003), material handling (Durrant-Whyte,
1996; Walter et al., 2015), underwater and ocean science (Singh et al., 2004; Johnson-Roberson
et al., 2010; Williams et al., 2012; Yoerger et al., 2007; Bowen et al., 2008; Camilli et al., 2010;
German et al., 2008), and space exploration (Maimone et al., 2007; Furgale and Barfoot, 2010;
Arvidson et al., 2010). The 2004 and 2005 DARPA Grand Challenges (Thrun et al., 2006; Urmson
et al., 2006) and the 2007 Urban Challenge (Urmson et al., 2008; Bacha et al., 2008; Miller et al.,
2008; Montemerlo et al., 2008; Bohren et al., 2008; Leonard et al., 2008) accelerated capabilities
in autonomous navigation on rough terrain and in urban environments, respectively. Collectively,
these efforts have led to significant progress in planning, perception, state estimation, and control
in the face of uncertainty inherent in these environments.

Despite these advances, and with few exceptions (Walter et al., 2015), most systems do not
consider the challenges of operating field robots that interact and operate alongside humans. The way
field robots accept input and provide feedback has typically been restricted to specifically engineered,
human-interface devices for direct or supervised teleoperation, providing goals and returning sensor
observations and synthesized representations of the environment. As field robots become more
capable, the scope of information that must pass between operators and robots in multi-robot
human-robot teams increases dramatically. Human teams use language in audial or visual forms to
express diverse concepts compactly at dramatically different scales. For example, a human-robot
team performing urban search-and-rescue might involve high-level goals like “search for survivors
in the building on the corner of the park,” specific instructions such as “clear the door of debris,”
or requests for information like “how many people were on the ground floor of that building?”
To interpret these instructions, the robot must be able to understand spatial concepts such as
“corner of the park” and “ground floor,” in addition to executing such procedures as “search” and
“clear,” and responding to queries for information collected from sensor observations using natural
language. Recent advances in natural language understanding, which interprets the meaning of
operator utterances in the context of the perceived environment, has enabled mobile robots (Barber
et al., 2016), manipulators (Broad et al., 2017), and mobile manipulators (Patki et al., 2020) to follow
human-provided instructions using text-based interfaces or automatic speech-recognition tools. Each
of these applications uses a symbolic representation of actions that the robot can execute and
concepts that it can represent, both tailored for their specific domains. In contrast to our architec-
ture, these systems only accept instructions and do not provide linguistic feedback to the operator.
Recent work on bidirectional communication shows that language-understanding models capable of
reasoning about their observed environment can be inverted to ask for clarifications (Knepper et al.,
2015) and express discrepancies in facts provided by the human operator (Arkin et al., 2020).

In this article we present a novel robot intelligence architecture for bidirectional, grounded
language communication with autonomous field robots. The proposed framework enables the robot
to construct a symbolic representation of the activities an operator wants it to perform. This
architecture converts those symbols both to and from language in the context of the robot’s
environment and constructs behavior trees of actions from those symbols with robot-specific
implementations of said actions to enable scalable and portable intelligence architectures that are
not bespoke for individual platforms. Descriptions are provided for modules that implement semantic
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perception, environment modeling, language understanding and generation, mission planning and
execution, navigation, manipulation, and scene description. Experimental results on three different
field robots demonstrate how this intelligence architecture enables human-specified tasks that require
understanding of spatial concepts, declared knowledge, disambiguation, and a diversity of different
actions that the robot may be required to perform. These experiments illustrate how different
language inputs and perceived environments can result in unique activation patterns through the
architecture and also that these routes exploit many shared components and a centralized world
model. This architecture represents the evolution of an intelligence architecture developed under the
Army Research Laboratory’s Robotics Collaborative Technology Alliance (RCTA) for an activity
involving human-robot execution of complex missions. This research program, spanning more than
a decade, supported the goal of creating manned/unmanned teaming by transitioning robots from
tools to teammates through the development of technologies that enable bidirectional exchange of
information between human and robot teammates in human-understandable terms.

2. Related Work
While there are a large number of field robots that allow operators to perform complex tasks in
semi-structured and unstructured environments, the large majority operate either as entirely or
partially autonomous agents (Scheding et al., 1999, 1997; Roberts et al., 2000; Marshall et al., 2008;
Duff et al., 2003; Durrant-Whyte, 1996; Singh et al., 2004; Johnson-Roberson et al., 2010; Williams
et al., 2012; Yoerger et al., 2007; Bowen et al., 2008; Camilli et al., 2010; German et al., 2008;
Maimone et al., 2007; Arvidson et al., 2010; Buehler et al., 2009) or under full teleoperation (Kang
et al., 2003; Ryu et al., 2004; Yamauchi, 2004; Fong et al., 2003; Keskinpala et al., 2003; Ballard,
1993; Fong and Thorpe, 2001). However, few field robots are capable of operating in the continuum
between full autonomy and full teleoperation, which requires an intelligence architecture capable of
reasoning over abstract directives provided by the operator. One exception is the Agile Robotics for
Logistics project (Walter et al., 2015) that developed a voice-controllable forklift capable of loading
and unloading trucks and other material handling tasks in dynamic, minimally prepared environ-
ments, including human-occupied outdoor warehouses typical of disaster relief and military forward
operating bases. The system allows operators to issue task-level commands using a combination of
speech commands (e.g., picking up a named object) and stylus-based gestures (e.g., placing cargo
at a user-annotated location in a bird’s-eye rendering of the robot’s surroundings). The architecture
uses a combination of monocular cameras and planar LIDARs to maintain a model of the robot’s
environment that expresses the name and pose of relevant objects (e.g., palletized cargo, trucks,
and people) and locations (e.g., storage bays). Unlike our approach, which utilizes class-level object
detection, their architecture performs instance-level recognition, which restricts the world model to
a small set of objects. In turn, this restriction limits the diversity of the language commands that
the system is able to reason over. Additionally, while our architecture is able to generate natural
language that conveys a rich amount of knowledge to human teammates, their framework is limited
to a small set of utterances that are hard-coded to convey the robot’s next task and current autonomy
state. Three additional works involving human-robot interaction for field robots include the systems
described in Perzanowski et al. (2001), Ryu et al. (2004), and Heikkilä et al. (2012). Perzanowski et al.
(2001) proposed a multimodal interface to ground robots that allows users to issue navigation-related
commands through pen-based gestures and a limited set of spoken utterances. Ryu et al. (2004)
described a multimodal teleoperation interface to a mobile manipulator designed for field operations.
The interface supports a limited set of speech commands that trigger mode changes (e.g., switching
from manipulation to navigation) and uses synthesized speech along with visualizations to convey
a pre-defined set of information back to the operator. Heikkilä et al. (2012) described a system
that allows people to command a mobile manipulator designed for space operations to manipulate
objects using simple spoken utterances. The proposed framework described here differs from these
three systems in that it is capable of bidirectional human-robot interaction of high-level goals and
low-level actions, and additionally capable of resolving observed ambiguities through a dialogue
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system capable of inferring unique descriptions of objects that cannot be uniquely resolved. The
proposed architecture is a significant expansion of the one proposed in previous work (Boularias
et al., 2015; Oh et al., 2015, 2017), which enables grounded language interaction with a field robot
through a multimodal interface. In contrast to this work, our architecture is able to communicate
bidirectionally through language, resolve ambiguous instructions, proactively ground symbols for
more efficient probabilistic inference, deliberatively interact with objects, and perform a diverse set
of behaviors across a variety of field robots, each with different capabilities.

3. Intelligence Architecture
Our approach to an intelligence architecture for collaborative human-robot teams is illustrated
in Figure 1. The architecture is composed of a number of modules that generally fall into three
categories: perception and environment modeling, grounded language communication, and mission
planning and execution. These modules are connected using ROS message passing to exchange
information in the form of text, objects, observations, actions, and/or commands to perform
sequences of behaviors corresponding to human-specified tasks. At the center of this architecture
is an intelligence world model that contains a store of objects, their semantic properties, and their
metric poses informed by sensor observations and language interaction with a human operator.
This model is used at multiple layers of the architecture to provide a common representation for the
robot to reason over when interpreting instructions, generating descriptions, and executing missions.
Communication between the human and the robot is done through a multimodal interface. The
multimodal interface is a human-held device that accepts and displays text describing observed
environments from the robot’s perspective, which originate from the scene description module,
poses questions and shows facts from the natural language generation module via the intelligence
world model, and illustrates a top-down visual perspective of the world. The natural language
pipeline can be visualized by the red modules surrounding the intelligence world model. The
natural language understanding module takes phrases and symbols from the parsing and declarative
knowledge module. This module then uses these phrases and symbols with the context of the
robot’s observed environment and any proactively grounded symbols to generate a distribution
of symbols representing the grounded meaning of the statement. When symbols indicate that a
referenced object is ambiguous, these symbols are sent to the natural language generation module
that inverts the language model for unique descriptions of the observed instances of the referred to
semantic object type to pose a disambiguation query to the human operator through the multimodal
interface. The natural language model maintains the content of previously grounded statements so
that when a statement resolving the ambiguous query arrives, it can be incorporated with the
previous ambiguous instruction to generate an unambiguous action. These resolved actions, just
as more direct statements that do not require disambiguation, are passed as actions, modes, and
constraints to a mission planner that generates a behavior tree that sequences actions the robot
must perform to complete the described behavior or sequence of behaviors. These actions are
routed to one of four different modules in the intelligence architecture responsible for performing
these actions, and their states are tracked to quantify progress in the inferred mission. The first of
these modules, the navigation planner, resolves motion planning queries that require the robot to
drive from one pose to another pose in a partially observed environment and additionally handles
more nuanced modes of locomotion that consider traits like “stealthiness”. The second module,
the manipulation planner, handles base locomotion, grasp planning, and manipulation planning for
mobile manipulators that use the presented intelligence architecture. The third module, deliberative
interactive estimation, handles actions that require the robot to physically interact with an object to
measure and report a semantic property such as “full” or “empty” that would be fused with visual
observations to better inform the state of objects tracked by the intelligence world model. The last
module, scene description, uses a learned image-captioning model to generate detailed descriptions
of the current scene observed by the robot. In this section, we will expand the description of the
role of each of these modules, describe an implementation of each module and situate it in the
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Figure 1. An intelligence architecture for collaborative human-robot teaming. The diagram illustrates how
information travels between the human and the robot using a number of different modules representing component
technologies in the architecture. Modules for simultaneous localization and mapping, semantic perception, the
intelligence world model, and the human-robot interface are shown in green. Modules for natural language
understanding and generation are illustrated in red. Modules for mission planning and execution are shown in
blue. Some modules implemented in this system, such as the metric world model used by the navigation planner,
are omitted for clarity.

context of the contemporary literature, and expand on unique features or capabilities brought forth
by the presented implementation. We introduce each component of the architecture and how they
interact to perform missions and tasks guided by the human in the context of the robot’s observed
environment. Note that missions and tasks in this paper describe high-level activities from human
guidance while actions and behaviors describe components of a mission or task performed by the
modules for navigation planning, manipulation planning, deliberative interactive estimation, and
scene description. Since the human guidance may only require one action or behavior to perform
a simple mission or task, human instructions such as “drive to the cone” could be described as a
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human-directed mission or task involving navigation to an object or the single action or behavior
needed for completion of the mission by the navigation planning module.

3.1. Modules for Perception and Environment Modeling
The first group of modules in the architecture – comprising the multimodal interface, semantic
perception, simultaneous localization and mapping, and the intelligence world model – handle inputs
and observations of humans and the environment to construct a semantic and metric model of the
world that is appropriately but not overly detailed for grounded language communication, mission
planning, and motion planning. The multimodal interface also provides a channel for the robot to
directly interact with human operators by presenting text-based descriptions of the environment
from the scene description module, disambiguation requests generated by the natural language
understanding and generation modules, and text-based descriptions of observed facts that are
inconsistent with facts informed through the deliberative interactive estimation module.

3.1.1. Multimodal Interface
To effectively interact with human teammates, robots must be able to receive guidance, necessary
knowledge, and commands from humans and provide information back to the human. This bidi-
rectional interaction requires methods that display information to the human teammate and that
acquire inputs from them. Traditional approaches that use specifically engineered input devices
or programmed touchscreen devices to allow human operators to provide guidance and receive
information are subject to constraints imposed by the engineer or programmer before the system
was fielded. Alternative approaches that use language are inherently more flexible but fraught
with difficulties of automatic speech-recognition (ASR), parsing, language understanding, dialogue
management, language generation, and text-to-speech (TTS). This architecture blends both of these
modes of communication in a device described as the multimodal interface (MMI). The MMI enables
the operator to communicate with a robot through speech and gestures, and receive auditory, visual,
and tactile responses from the robot through a hand-held touchscreen device with a headset for ASR
and sound, a gesture recognition glove for interpreting operator gestures, and a C-2 Tactor Belt for
tactile messages (Barber et al., 2016, 2015b). According to Barber et al. (2015a), a user-centered
design approach was applied to the development of the MMI. This approach takes into account
the task variables (i.e., situational constraints, frequency of the task, and rigidness of options
available to complete the task) with the goal of meeting the demands dismounted Soldiers are
exposed to operationally. For example, input and output of the device must not only capture and
deliver the information between a Soldier and robot, but also be robust to noise and visual clutter
while operating together or separated. As a result, the MMI enables multimodal communication,
which supports redundancy and levels of communication that are more robust than single mode
interaction (Bischoff and Graefe, 2002; Partan and Marler, 1999), and is tailored to the needs of the
Soldier, even leveraging vocabulary preferences of Soldiers (Barber et al., 2014). The final design
of the MMI incorporates this feedback into the fielded interface that we experimentally evaluate in
Section 5.3. Figure 2 presents a screenshot of the MMI that shows the overhead map, robot view,
and language interface.

3.1.2. Semantic Perception and Simultaneous Localization and Mapping
In order to intelligently interact with the environment, the robot must be able to perceive the envi-
ronment and build an internal world model. The primary means for inserting objects into the world
model is our image and range sensor-based perception system, which relies on RGB, RGB-D, and
LIDAR measurements to detect, localize, and track object instances. The simultaneous localization
and mapping module processed LIDAR and IMU data to produce map and state estimates used
to inform the frame of reference of local observations and the state of the robot in the intelligence
world model. The semantic perception module is comprised of three main components: an object
detector, an object tracker, and an object pose estimator. We use Faster-RCNN (Ren et al., 2015)
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Figure 2. Visual display for the multimodal interface, which can be decomposed into three areas: map, video,
and information. On the left, the situation awareness map depicts a top down, north-up representation of the
environment with iconography for objects, buildings, and road networks. The top right portion shows video feeds
from the robot, with the ability to subscribe to multiple channels (e.g., raw video, labeled video). The bottom
right contains information and commands given to the robot, and its reports back (e.g., “I see two barrels
and a bicycle”). Included below this information are system health indicators (e.g., battery, signal, run-time,
microphone).

Table 1. Object classes in the RCTA dataset. Table repli-
cated with permission from Narayanan et al. (2020).

Generator Crate Bench
Dumpster Pelican Case School Bus
Backpack Suitcase Gas Can
Debris Trash Bin Gravestone
Wood Pallet Tower Barrier
People Toilet Police Truck
Light Pole Barrel Gas Pump
Control Tower Tank Motorcycle
Shop Window Electrical Box
Gate Chair Bicycle
Table Traffic Sign Truss
PVC Pipe Weapons Stairs
Door Ground Ingress Ground

for object detection in RGB images, specifically the maskrcnn-benchmark implementation (Massa
and Girshick, 2018). The object detector is trained to detect the RCTA specific object classes, using
data from (Narayanan et al., 2020). Figure 3 visualizes example detections of some of these object
classes. Table 1 provides the full list of object classes.

People detection and tracking is implemented in its own module, separate from the other object
classes handled by semantic perception. Detection is achieved from monocular imagery using the
Mask-RCNN instance segmentation model (Mertz et al., 2013). The monocular masks are then
applied to a calibrated stereo image to obtain a robust 3D estimate for the detection in the reference
frame of the camera using the RANSAC algorithm. The detection is then transformed into the world
frame using vehicle odometry, where a person object instance is maintained in the world model. The
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Figure 3. Example classifications of both objects and people at the testing environment.

effective range of this method is limited to about ten meters but could function both indoors and
outdoors.

Person tracking is achieved using two integrated trackers. The first consists of a linear Kalman
filter that tracks the position, height, and respective velocities of each person object in the world
reference frame. A set of active tracks are maintained using a filter assigned to each track. When
a new observation is made, optimal assignments to existing tracks are estimated using bipartite
matching. Unmatched observations are initialized into new tracks. Similarly, tracks that have not
been associated with an observation within a time threshold are removed from the set of active
tracks. A second LIDAR-based method (He et al., 2017) tracks all entities above the ground plane.
This tracker is designed to maintain the persistence of tracks outside the field-of-view of the stereo
cameras, which was limited to sixty degrees. Due to the abrupt turning motions of the skid-steer
robot, human tracks often translate in and out of stereo view and would be quickly lost if not
maintained by a secondary tracker. The LIDAR-based tracker used a VLP-16 LIDAR with a 360-
degree field-of-view, and considerably longer range than stereo. Furthermore, the update rate of the
LIDAR tracker is much faster than stereo, making it more robust to rapid motion of the robot.
Due to the limited resolution of LIDAR, however, this tracker could not differentiate between object
classes of similar size, and as a result would track essentially any object that protruded from the
ground plane. To integrate the trackers, two independent sets of active tracks are maintained for each
of the trackers. Whenever a stereo track left the field-of-view of the camera, the track is associated
with a corresponding LIDAR track if one exists. Similarly, when a new stereo track is created,
all LIDAR tracks with stereo associations are queried and if a match is made, the stereo-track is
reinstated using its previously associated state.

3.1.3. Intelligence World Model
As seen in Figure 1, many components of the intelligence architecture interact through object
descriptions. To facilitate these interactions, the Intelligence World Model (IWM) is conceived as
a simple object store that collects and tracks fused information about the presence and state of
objects in the world. Earlier efforts on implementing a world model focused on combining metric
and symbolic information into one unified structure (Dean et al., 2014), but this design was scaled
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back in an attempt to discover what is the minimal design necessary to realize the language-guided
mission concepts presented here.

The concept of an “object” is broadened beyond the object-level output of perception to include
symbols such as regions and waypoints that are manually specified or created as part of the mission
planning process. In particular, objects in the IWM consist of:

• A unique ID, autogenerated
• Object type and sub-type (e.g., type “cone” with sub-type “traffic”)
• Object pose and velocity in global coordinates
• Object geometry, i.e., the bounding box from the original detection or a region description as

a polygon
• Semantic property distributions (e.g., property “heavy” with distribution over true/false).

As a data store, the IWM allows for inserting, modifying, or deleting objects by ID; the IWM
also has a simple query interface that allows for returning a list of all objects, objects by ID, objects
by type and/or subtype, and objects with poses inside a given query region. The natural language
understanding and generation modules use this query interface to pull the most recent set of relevant
objects that are available for grounding.

3.2. Modules for Grounded Language Communication
After language is received by the architecture, it must be understood in the context of the perceived
environment. The process of grounded language communication is performed by four modules. First,
a string of text populated by the multimodal interface is converted into a parsed representation that
includes both imperative and declarative components with symbols that could be extracted without
the environment model. The meaning of this representation of the processed text is interpreted in
the context of the observed environment model populated by the intelligence world model using
variations of Distributed Correspondence Graphs (Howard et al., 2014) in the natural language
understanding module. Inference is accelerated using symbols grounded before the instruction is
observed by language and grounding pairs populated by a proactive symbol grounding module. This
module opportunistically aligns phrases that the robot may encounter with symbols in the observed
environment. This architecture is significantly different from purely reactive approaches to natural
language understanding that wait until the instruction is observed to start aligning symbols. The
natural language generation module is the last step in this architecture that is used when a natural
language description of a symbol is needed for either disambiguation of a statement interpreted
by the natural language understanding module or for generating text-based descriptions of facts
observed by the deliberative interactive estimation module.

3.2.1. Parsing and Declarative Knowledge
The parsing and declarative knowledge module receives the natural language utterance from the
MMI and performs syntactic analysis on the text. The module uses a grammar comprising a set
of production rules that can generate the natural language utterances we are interested in. Some
example production rules in our grammar that are applied in the examples explored in Figure 4 are
shown in Table 2:

Table 2. Example production rules for the CKY parser used for converting text extracted
to the parse trees shown in Figure 4.
VP → VB PP PP → TO NP PP → IN NP NP → DT NN NP → DT JJS NN
NP → NP PP VB → drive VB → go IN → behind IN → on
TO → to JJS → leftmost NN → barrel NN → left DT → the
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Figure 4. The parse trees for the imperative sentences (commands) “drive to the leftmost barrel” and “go
behind the barrel on the left”.

In these production rules, “drive” and “go” are terminal words whereas other rules like “NP →
PP NP” are grammar non-terminals. We use this grammar to parse such input utterances into parse
trees. Each parse tree provides a sequence of grammar production rules that can be used to generate
the utterance. We use the CKY algorithm with beam search allowing us to recover multiple valid
parses for a single utterance. Two example utterances and possible corresponding parse trees are
shown below in Figure 4 for the phrases “drive to the leftmost barrel” and “go behind the barrel on
the left”.

The parse tree allows us to distinguish between imperative and declarative sentences. Imperative
sentences are ones that convey instructions, and usually constitutes a single verb phrase (VP), as
seen in the example above. We directly transmit the parse tree of such sentences to the grounding
module. Declarative sentences on the other hand provide information or assign properties to the
subject phrase of a sentence. For example, the declarative sentence “the barrel on the right is
dangerous” assigns the property “dangerous” to the object referenced by “the barrel on the right”.
In these cases, we split the sentence into the reference of the object (“the barrel on the right”) and
the property mention (“is dangerous”) using conditions on the parse tree. The property is mapped
to a knowledge predicate (in this case, a predicate called IsDangerous(·)) and passed to subsequent
modules, along with the natural language reference of the object.

The ability of a robot to understand, reason and follow commands is intimately tied to its
knowledge about the world encapsulated in the world model. Previously, we discussed the represen-
tation of the world model that encompassed spatial knowledge about objects in Section 3.1.3 and
described in detail a grounding model to relate language from a human commander with spatial
knowledge about the world yielding a symbolic representation amenable for the planner to synthesize
appropriate behaviors for the robot to execute. In essence, the system detailed so far enabled the
robot to understand and respond to instructions such as “drive to the center cone, go to the barrel,
pick up the gas can” etc.

Apart from the knowledge about the world arising from knowledge of entities and spatial relations,
humans use and reason about factual or declarative knowledge about the world. We now consider
the problem of interpreting and reasoning with declarative knowledge during language grounding.
One class of declarative knowledge can relate to facts or properties associated with objects an object.
For example, the utterance, “Robot, I am your commander, follow me” conveys the fact (“about
being a commander”) is associated with a particular object in the world model and is required
to appropriately execute the following task. A second category of declarative knowledge relates to
properties that may not be directly visible to the robot. For example, consider the utterance, “the
barrel on the left is empty”. Here, the human gives knowledge about the internal state of an object,
not visible to the robot. This knowledge is crucial for deciding how to ground subsequent interactions
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that rely on those expressed properties, such as if a human operator gives the instruction “go to
the empty barrel”. This instruction could not be resolved using purely visual information like object
color or location, so the robot must either accept human guidance or physically interact with the
object to resolve any ambiguities.

The ability to interpret language with acquired background knowledge requires bridging two
technical challenges. First, the robot must determine the fact or property and to which object it
relates to in the world model. Second, since the knowledge conveyed by the human must persist for
future situated linguistic interactions, there is a need for a model to retain and update the acquired
knowledge. Finally, the robot must be equipped with the ability to use the acquired knowledge in its
language grounding model. Next, we describe the approach to bridge the above-mentioned technical
challenges.

Given an estimate of the language input, the parser partitions the statement into imperative
(commands) and declarative (factual) components. For example, “is empty” is the imperative part
of the utterance “the barrel on the left is empty”. We observe that factual knowledge can often
be determined using linguistic cues. We use such cues embedded in the parse of the sentence to
determine which phrases contain declarative knowledge. This is realized using a rule based parsing
approach which additionally allows multiple candidates to be determined. Next, the imperative
part of the sentence, “the barrel on the left” is interpreted using the natural language grounding
model discussed in Section 3.2.2. We then associate the grounding of the imperative part and the
declarative part to determine that the grounding for the utterance as an expression of the property
“is empty” with the barrel-type object instance towards the left of the robot.

We now address the task of persisting declarative knowledge for future language grounding
tasks. We adopt a probabilistic approach that represent the belief over the properties of objects
in the world model as random variables. The estimated properties such as “is empty” serve as
observations for updating the robot’s belief in the world model. The linguistic observations serve as
evidence and can be incorporated using a measurement update using a Bayes filter. For a detailed
exposition, please refer to Paul et al. (2017) and Arkin et al. (2020). Finally, when a robot encounters
an instruction such as “inspect the empty barrel” the language grounding model probabilistically
associated the utterance “is empty” with the belief over the property (IsEmpty) in the world model.
The grounding model incorporate features that represent the degree of uncertainty inherent in the
robot’s knowledge. Once the instruction is correctly interpreted, the grounded symbol is used for
behavior synthesis in future stages of the pipeline.

3.2.2. Natural Language Understanding
Once the system is able to identify constituents of the statement that need to be grounded,
the natural language understanding module uses this linguistic information in the context of an
environment model distributed by the centralized Intelligence World Model. Grounding is performed
using variations of the Distributed Correspondence Graph (DCG) (Howard et al., 2014). The DCG
shares the assumption of the Generalized Grounding Graph (Tellex et al., 2011) by assuming
conditional independence across linguistic constituents when constructing a factor graph. The DCG
however further assumes conditional independence assumptions across constituents of the symbolic
representation that defines the space of groundings. In these models the size of the symbolic
representation is a function of the observed environment and the complexity of symbols understood
by the intelligence architecture. An illustration of the DCG for the three-phrase statement “drive
to the leftmost barrel” and the DCG for the six-phrase statement “go behind the barrel on the left”
are shown in Figure 5 along with their alignments to the corresponding parse trees in Figure 4.

The white and gray circles in Figure 5 represent known and unknown random variables in the
DCG for the example expressions. The factors fij , represented as black boxes in Figure 5, provide the
connections between the unknown correspondence variables (φij) the current phrase λi, a symbolic
constituent γij , and any child groundings expressed by a non-false correspondence of the child phrase,
represented as potential connections between the factor and all child phrase symbolic constituents.
All factors also have an implicit connection to the environment model Υ that serves as an important
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Figure 5. The DCGs for the expressions “drive to the leftmost barrel” and “go behind the barrel on the left”
aligned with their corresponding parse trees from Figure 4. The structure of each DCG is a function of both the
parse tree and the number of symbols expressed by the symbolic representation and the environment model. Each
factor fi j in the factor graph is illustrated as a black box. The observed and unknown variable nodes in the factor
graph are shown in white and gray, respectively. Each factor also has an implicit connection to the environment
model ϒ .

signal for determining the meaning of expressions that involve spatial relations and the context of
the symbols expressed from the prior utterance for monologue comprehension and disambiguation
(Arkin et al., 2017). The conditional independence assumption across symbolic constituents here is
valid for the space that we consider. Even if symbolic constituents represented at various parts of the
inference are independent, the model has full context of the environment model to ground example
expressions like “the leftmost barrel” or “the barrel” because that model includes all information
about all observed objects with a semantic class that is associated with objects and the word
“barrel” in the training data. Mathematically this inference appears as Equation 1. The conditional
probabilities in this model are approximated using log-linear models trained from corpora of fully
annotated data as described in Paul et al. (2018). Inference is performed using beam search to
efficiently prune off low-likelihood combinations of symbols during search for the most likely set of
correspondence variables. In this formulation, the child correspondence variables Φci determines the
expression of the child symbols and the conditional probability is expressed as a function of those
values.

Φ∗ = arg max
φij∈Φ

|Λ|∏
i=1

|G|∏
j=1

p(φij |γij ,Φci , λi,Υ) (1)

In the DCG, the runtime of the inference process increases linearly with the number of symbols
and phrases considered by the utterance since there is a constant number of correspondence
variables (“true” and “false” for binary correspondence variables) for each factor. This linear
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growth is problematic in cluttered environments composed of many objects and complex symbolic
representations capable of representing many different types of objects, spatial relations, regions,
actions, sets of objects, sequences of actions, etc. The Adaptive Distributed Correspondence Graph
(ADCG) (Paul et al., 2016) proposed a solution to this problem by adapting the expression of the
symbolic representation within the inference procedure so that only subsets of the larger symbol
space would be expressed based on the expression of other symbols. For example, the model was
able to learn that the statement “five blocks on the right” could assume only spaces of objects
containing a number equal to the value interpreted by the meaning of the word “five” and include
only those collections of objects with semantic labels learned to associate with the label “blocks”.
From that sampled space of object sets, the unique meaning of “five blocks on the right” would
be resolved by searching in the context of the spatial relation represented by the phrase “on the
right”. This model was shown to significantly improve the computational efficiency of probabilistic
inference in comparison to DCGs where the symbolic representation is fully explored at inference
time.

Other variations of DCGs, such as the Hierarchical Distributed Correspondence Graph
(HDCG) (Chung et al., 2015) and Hierarchical Adaptive Distributed Correspondence Graph
(HADCG) (Paul et al., 2018), also were shown to improve the computational efficiency of natural
language symbol grounding. The HDCG treats inference as a two-step procedure where first the
symbolic representation is constrained by inferring bounds using only the phrases in the instruction.
Grounding is performed in a distribution of these simplified models and aggregated to interpret the
meaning of the utterance. Using one of the statements from Figure 5 as an example, the sentence
“drive to the leftmost barrel” does not necessarily need information about the physical location of
barrel, vehicle, building, and other semantically classified objects not learned to associate with the
phrase “barrel” or spatial relations learned to correspond with the word “leftmost” to accurately
interpret the meaning of this statement. Pruning these symbols from the space of symbols considered
based purely on language was shown to significantly improve the computational efficiency of heuristic
search. There are however many examples where this model does not provide sufficient pruning.
For example, in an environment with many instances of the expressed object and the symbolic
representation that must consider ordering of objects within identified sets, HDCG-based pruning
may not substantially reduce the size of the symbolic representation. The symbolic representation
for the instruction “pick up the middle block in the row of five blocks on the right” in an environment
containing more than a dozen blocks would not exclude all variations of blocks and sets of blocks from
consideration like the ADCG model would. Observing that aspects of the ADCG and HDCG could be
combined to provide even more efficient approximations of the symbolic representation, the HADCG
(Paul et al., 2018) combined these ideas into an approach that demonstrated an improvement in the
efficiency of language grounding without a loss of accuracy over the DCG, HDCG, and ADCG in a
series of experiments involving manipulation and navigation commands. Variations of these models
with domain specific symbolic representations have been applied for applications involving language
grounding for synthesis of verifiable controllers (Boteanu et al., 2016, 2017), adaptive grasp control
(Esponda and Howard, 2018), planning corrections for assistive robotic manipulators (Broad et al.,
2017), and homotopy-aware motion planning (Yi et al., 2016).

The symbolic representation for the experiments described in Section 4 and reported on in
Section 5 was an extension of the symbolic representation discussed in Paul et al. (2018). Novel
symbols used to represent temporal relationships, temporal relationships between actions, and
temporal constraints between actions like “before” and “after” and features that considered the
relationship of such symbols to those previously inferred by prior utterances permitted symbol
grounding of instructions like “navigate to the pelican case on the right and then report,” “instead
navigate to waypoint bravo,” “go to the case but first go to the gascan” and “after that navigate
to the barrel”. Novel symbols for action properties and object properties were also implemented to
permit the inference of symbols that describe the semantic properties of an action or object, such as
an action that is to be performed “quickly” or an object described as a “dangerous barrel,” without
needing to resolve the connection to a physical object at that stage of DCG inference.
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3.2.3. Proactive Symbol Grounding
Grounded language communication systems often treat the problem of language understanding
as a reactive process in which a human first provides an utterance in the context of the current
world to then trigger the process of grounding the language into physical concepts and entities. A
reactive approach may seem intuitive as a result of the inherent dependence of the meaning of the
utterance on the current state of the world. However, this reasoning does not apply to predominantly
static environments. In practice, there is often system idle time while a robot teammate awaits an
instruction from their human collaborator; if this idle time occurs in the context of a static world,
it is possible to instead take a proactive approach to language understanding. By anticipating likely
utterances that a human might say, or phrases they might use, the robot can precompute the
meaning and store the result for potential reuse once an utterance is provided.

The proactive symbol grounding module of the intelligence architecture is designed to use idle
system time to perform this kind of pre-computation. It is provided with an identical grammar model
as used by the parsing module (i.e., the grammar production rules and set of possible linguistic
tokens) that drives the generation of a subset of possible utterances and phrases that the human
teammate might express. In principle, this ungrounded language generation process need only be
done once and is performed in a bottom-up approach.

Given the generated subset of possible utterances and phrases, this module can sample examples
and compute their associated grounded symbolic representation in exactly the same fashion as would
be done reactively. This sampling is done in a bottom-up approach to conveniently align with its
DCG-specific utility of providing insertable partial solutions due to the phrase-level conditional
independence assumptions of the model formulation (i.e., leaf phrases are most likely to be reused,
with that likelihood decreasing as parse tree depth increases). Once computed, the phrase and
symbol pairs are stored in a lookup table and maintained for the duration of time that the static
world assumption holds. Since the grounded symbolic meaning of each phrase will become stale when
the world configuration or content changes sufficiently, this module regularly queries the intelligence
world model module and will discard its stored solutions if it can no longer guarantee their validity.

Adopting the notation of DCGs from Equation 1, let Λ = {λ1, λ2, . . . , λN} be a novel utterance
provided by a human teammate and Λpsg ⊂ Λ indicate that there exists a subset of phrases in
Λ that have been precomputed via the proactive symbol grounding process. These Λpsg have an
associated set of the most likely true correspondences Φpsg. If we let Λnew = Λ \ Λpsg, then it
directly follows that |Λnew| ≤ |Λ|. The reactive inference process triggered by the novel utterance Λ
can be reformulated to only search over Λnew as shown in Equation 2 below. This modified reactive
inference process can be thought of as being bootstrapped with precomputed solutions for parts of
the novel parse tree.

Φ∗ = arg max
φij∈Φ

|Λnew|∏
i=1

|G|∏
j=1

p(φij |γij ,Φci , λi,Υ) (2)

The proactive symbol grounding module provides a service to the natural language understanding
module to populate the solutions for Λpsg given the utterance Λ. It accepts a query message
containing the parse tree matching the full novel utterance provided by the human (as constructed by
the parsing module earlier in the pipeline). Upon receiving a query, it performs top-down search for
matching phrase structures in its stored solutions, inserts the corresponding symbols for the found
matches and their associated child phrases, and sends a reply message containing the populated
parse tree back to the natural language understanding module. In the best case, the returned tree
is fully annotated at the cost of a lookup; in the worst case, the returned tree is empty at the cost
of lookups for each phrase in the tree.

The module also provides a service to the natural language generation module. It accepts a
query message containing the symbols for which the language generation module is looking for a
corresponding utterance. Upon receiving a query, it iterates through all of the stored solutions to
find a matching root-level set of symbols. If found, it sends a reply message containing the most likely
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corresponding phrase or utterance. If not found, it processes any remaining ungrounded phrases for
the current world and sends a reply message containing the most likely utterance. In some cases, no
phrase corresponding to the input set of symbols is found and a reply message is sent containing a
failure signal.

3.2.4. Natural Language Generation
In collaborative grounded language communication systems, it is often useful for a robot to say
things to a human teammate, whether to clarify ambiguous statements or commands, communicate
knowledge updates gained through physical interaction with the world, ask for help to accomplish
a task, among others. In the context of a symbol-based meaning representation, speech generation
can typically be considered as a problem of generating the most likely corresponding utterance
for a symbol set that represents meaning of the clarification, knowledge update, or query for
assistance. The natural language generation module’s role within the intelligence architecture is
to solve precisely this problem for a provided set of symbols associated with the first two situations:
(1) clarifying an ambiguous statement or command and (2) conveying knowledge updates about the
world as acquired via inference during physical interactions.

The problem of finding the best utterance given a set of symbols can be solved by inverting the
language understanding problem in which the most likely symbol set is inferred for a given utterance
and world model. This is sometimes referred to as inverse semantics (Tellex et al., 2014). In practice,
inverse semantics can be implemented as a sequence of language understanding problems for a set
of linguistic candidates and choosing the most likely candidate with a corresponding set of symbols
that matches the desired symbol set to be communicated.

As also described for the proactive symbol grounding module in Section 3.2.3, the natural
language generation module produces a set of linguistic candidates according to an identical
grammar model as used by the parsing module. Given the set of linguistic tokens and production
rules, this module produces a subset of the possible utterances and phrases. This ungrounded
language generation process need only be done once and is performed in a bottom-up approach.
In order to prevent recursive construction of an infinite set of candidates, the generation process is
constrained by a user-specified parse tree depth limit.

The problem of inverse semantics using DCGs can be formalized as estimating the most likely
utterance Λ∗ from the generated subset of possible utterances {Λ1,Λ2, ...,ΛN} ∈ Λ given the known
corresponding set of symbols of the intended meaning ΓΛ, the associated true correspondences ΦΛ,
and the state of the world Υ:

Λ∗ = arg max
Λ∈Λ

p(ΦΛ = true|Λ,ΓΛ,Υ) (3)

As mentioned, this is implemented as a sequence of language understanding evaluations in
which the input language parameter is assigned to the next element in the set Λ. This imposes a
computational cost that directly impacts runtime performance. While using DCGs as the language
understanding model does provide runtime performance improvements, the cumulative runtime
cost for all Λ ∈ Λ is non-trivial and plausibly prohibitive with respect to the desired or required
mission tempo. It is important to provide additional mechanisms with which this grounded language
generation process can produce faster solutions.

Fortunately, the proactive symbol grounding process and associated stored solutions can fill this
role. By construction, the set of linguistic candidates used by both the proactive symbol grounding
module and the natural language generation module are equal. Any solutions stored by the proactive
symbol grounding process can be treated as precomputed solutions for the inverse semantics problem
and can be used to effectively bootstrap the process at the cost of lookup. The resulting cardinality
of the set of utterances that need to be reactively computed by the inverse semantics process is
necessarily less than or equal to the initially constructed problem: Λnew = Λpsg \Λ ≤ Λ. Equation 3
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can thus be reformulated as:

Λ∗ = arg max
Λ∈Λnew

p(ΦΛ = true|Λ,ΓΛ,Υ) (4)

In the best case, the proactive symbol grounding process will have exhausted the full set of
generated possible utterances and the cost is that of searching over a stored list of solutions to find
the most likely utterance with a corresponding set of symbols that matches ΓΛ. In the worst case,
the proactive symbol grounding process will have computed no solutions and the cost is equivalent
to the cost of computing Equation 3 with a trivial message-passing overhead.

3.3. Modules for Mission Planning and Execution
Once the robot has a symbolic representation of the task that the human wants the robot to
perform, it must sequence and initiate the necessary behaviors to complete the action. The mission
planner receives the symbolic representation of actions, modes, and constraints and then constructs
behaviors trees for the mission planner to operate on. The navigation planner, manipulation planner,
deliberative interactive estimator, and scene description modules generate and send commands to
the robot or provides feedback to the operator through the multimodal interface.

3.3.1. Mission Planner
The role of the mission planner is to take the set of symbols produced by language grounding and
produce an executable behavior tree that will accomplish the intended action (Colledanchise and
Ögren, 2018). Our mission planner is an implementation of the PA-BT algorithm (Colledanchise and
Ögren, 2018): planning is carried out as an ongoing behavior tree expansion that only triggers when
the system encounters unsatisfiable conditions, in the spirit of “Planning in the Now” (Kaelbling and
Lozano-Pérez, 2011). Missions are initialized with behavior trees that consist of only the high-level
conditions satisfying the grounded language commands. These conditions are a direct translation
of the action symbols produced by the natural language understanding system (Sec. 3.2.2). The
translations used for the experiments described here were:

• navigate(object) becomes the condition for the robot to be within a pre-configured radius of
given object

• follow(object) becomes the condition to be following the given object
• report becomes the condition to have “reported” (a dummy condition)
• push(object) becomes the condition to have “pushed” the given object (a dummy condition)

When multiple action symbols are grounded, their translated goal conditions are concatenated into a
sequence node with memory, to ensure that each is done only once. If action ordering constraints are
provided in the grounding, then these are used to define a partial ordering over the action symbols
and the actions are sorted by this ordering before translating and concatenating. Manipulation
planning (Sec. 3.3.4) was not integrated into the mission planning system for these experiments.

As described in Colledanchise and Ögren (2018), the main job of the planner is to attempt to
expand failed conditions into sub-trees that attempt to make them true and then re-execute the
behavior tree. These expansions are encoded as action templates, or small behavior trees that follow
a common pattern (i.e., the postcondition-precondition-action, or PPA, template) for describing how
actions can be used to satisfy a condition and parameterized by the arguments to the condition. In
our system, complexity of missions was largely driven by complexity of language, so our conditions
were actually trivially satisfied by a particular action. An example of the expansion of the at_object
condition is seen in Figure 6.

“Dummy” conditions will always evaluate to false but have defined action templates that will
expand out into a more complex set of conditions and actions. As an example, the “reported”
condition has an action template that expands into the report action that triggers the scene
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at_object(114)

?

goto_object(114)

action template
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Figure 6. Simple action template expanding a navigation condition. The behavior tree uses a selector node to
perform a sequence of actions that determines if the robot satisfies the condition described by “at_object(114)”
and performs navigation action described by the “goto_object(114)” command.

description system (Sec. 3.3.6). In this way, we can further decouple requests for actions from
the behaviors that produce those actions and leave a path to having multiple approaches that could
satisfy those requests.

The planner actually proceeds by a string of failed behavior tree executions: after the initial tree
consisting of only goal conditions is executed and likely fails, the failed conditions are expanded
one-by-one and the new trees are executed until reaching the next failed condition. The mission is
declared a failure only after trying to expand every failed condition and still failing.

Though the command language here is structured enough that it would have been possible to
build a system that directly translated symbol groundings into full behavior trees, implementing
it as a real mission planner capable of composing action templates on-the-fly to expand the plan
affords a degree of modularity that behavior trees are well-suited to exploit. This modularity also lets
us package up actions together with the action-templates that make use of them and dynamically
inject these into the planner when that action is initialized during system setup. The result is a
planning system with a dynamic planning domain, built by the actions that are actually available.

3.3.2. Mission Executor
The mission executor is responsible for linking platform state, mission state, and available control
behaviors in order to continuously execute a behavior tree (Colledanchise and Ögren, 2018) until it
returns Success or Failure. The key details of the behavior tree implementation are in the handling
of conditions and actions. Conditions are implemented as statements in the lua programming
language (Ierusalimschy, 2006) for flexibility. The embedded lua interpreter is augmented with
primitive functions that allow for interacting with the intelligence world model and getting state
information from ROS such as the robot position. Actions are implemented as modules, specific to
each action type, that can take parameterized behavior tree action labels and translate them into
calls to underlying behaviors through ROS ActionLib1 interfaces.

1 https://github.com/ros/actionlib
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During operation, the mission executor node receives new behavior trees from the mission planner,
sets up all condition-checking and action-dispatching functions before initiating execution, and then
executes the behavior trees in a continuous loop as long as the tree returns a status of Running.
As discussed in Sec. 3.3.1, the mission planner can send behavior trees that are not fully expanded
with the expectation that the mission executor will run until it reaches the next step that needs
to be expanded. Normal operation can see many rounds of failed executions and subsequent plan
expansions until the behavior tree has been expanded enough to successfully execute until the
original goal conditions are satisfied.

3.3.3. Metric Planning and Execution
With a symbolic goal resolved to a metric goal, the behavior-tree mission executor relies on a metric
planning and execution system to attempt that goal and report success or failure accordingly. We
follow a classic model, splitting this effort into one of finding a kinematically-feasible path from the
robot’s current pose to its goal, i.e., global planning, and computing a receding-horizon optimization
that corrects for errors and accounts for local, possibly dynamic, obstacles at a higher resolution,
i.e., local planning.

Kinematically-feasible motion planning is computed with the Search-Based Planning Library
(SBPL)2. We generate a custom set of motion primitives based on a maximum curvature of 0.4
and 0.2 m occupancy-grids. We use the ARA* planning algorithm and compute plans from the goal
to the start so that computations can be reused as the robot drives for fast re-planning actions.
Re-planning allows the system to quickly correct its path in the event of errors in platform control or
updates of the occupancy-grid map. Feasible solutions to most initial planning queries are found in
less than a second with optimal solutions being found in a few seconds for most scenarios, providing
collision-free paths that incorporate turn-in-place and k-turn maneuvers to move through tight
spaces.

We implement a receding-horizon model predictive controller to compute optimal trajectory
generation over the space of time-varying control inputs in order to provide local planning to the
system. Based on prior work in trajectory generation (Howard and Kelly, 2007), we formulate a
parameterization of the control input for a differential-drive platform such that a relatively small
number of variables (8) to provide an expressive description of the possible trajectories available to
the robot over a short time horizon of 3 seconds. An objective function is devised that performs a
weighted minimization of the error between the robot’s path and the desired global path coupled with
some curvature minimization terms to prevent overly aggressive trajectories. The final optimization
problem, including bounds on the parameterization of the control input, can be solved with a variety
of algorithms implemented in the NLOPT library3. We are typically able to solve the trajectory
generation optimization for a time horizon of T = 3 s in 5 to 10 ms, allowing for a control frequency
of 10 Hz. Finally, the system directly commands the optimized time-varying control inputs to the
robot’s underlying motor-control system.

There may be scenarios during mission execution where the robot should navigate in a more
deliberate manner rather than simply planning an obstacle free shortest path. For example, the
robot could evaluate environment terrain to identify more easily traversable areas, or it may consider
using objects in the environment to operate more covertly when a threat is perceived during mission
execution. To achieve this, the mission executor passes attributes along with metric goals to the
navigation system that trigger the use of an alternative global planner that produces motion plans
learned from human demonstration. Specifically, the planner uses a reward function learned via
inverse optimal control (IOC), or commonly referred to as inverse reinforcement learning (IRL).

In our IOC problem formulation, we learn a linear reward function, R(s) = θTφ(s), where φ(s)
represents the set of semantic features for state s, and θ are the feature weights we optimize to

2 https://github.com/sbpl/sbpl
3 http://ab-initio.mit.edu/nlopt
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Table 3. Manipulation stack operation for various actions: Prep is base repositioning
for reachability, Grasp attempts grabbing an object, Lift and Place are object-in-hand
manipulation actions.

Action Operation

Prep WBP consolidates ROI candidates and Object to Base goals are passed to
IC.

Grasp Grasp planning examines the selected ROI and resulting grasp poses are tried
by WBP.

Lift EE goal with wrench compliance parameters are given to IC.
Place A “dropoff” location, as a Base to EE goal, is passed to IC.

encode the demonstrated behavior. Semantic features, φ, are represented as binary occupancy grids
(and blurred versions of these) that encode, for example, the presence/absence of grass and road
terrain derived from the semantic segmentation algorithm running in the perception system, and
obstacles coming from LiDAR. We employ the maximum entropy IRL approach (Ziebart et al.,
2008) for reward function learning given human-teleoperated trajectories as demonstrations. Our
learning approach for navigation behaviors has been extensively tested in previous field experiments
for edge of road following and covert behaviors (Wigness et al., 2018).

During deployment, the semantic-aware planner generates a cost map using the learned reward
weights and feature extraction function. Given the robot’s current location and goal pose, the planner
searches for the lowest-cost trajectory that reaches the goal. This trajectory is then executed by the
navigation system with a kinematically-feasible approximation to this solution by the local planner
described above. In this work, we integrate a single learned IOC behavior into the mission planning
and execution. This behavior encodes traversal patterns that maintain relatively close proximity to
the edge of a road. During experimentation we use the natural language command “Go covertly” to
trigger the execution of this navigation planner4.

3.3.4. Manipulation Planner
We developed the manipulation stack around several layers of abstractions that allow for the
separation of concerns to facilitate interoperability and platform independence. Communication
among the layers utilizes the ROS Actionlib5 interface to reliably pass along goals, feedback and
results. A mobile manipulator may receive various manipulation actions such as Grasp, Lift, or Place
from the Mission Executor. We will briefly explain the integrated planners and controllers below
and summarize stack operations for each action in Table 3.

Operation in the first layer, which we define as the “Extrinsic Layer”, is divided between global
and local planners. The global planner references the map frame which includes object instances,
traversability and 2D cost maps to solve the point A to point B problem. Typically, these are
our navigation planners as described in Section 3.3.3. Our manipulation planners locally plan
with respect to the robot frame and uses search-based algorithms on 3D occupancy grids to
generate collision-free trajectories for object to end-effector (EE) goals. This choice of reference
frame significantly reduces planning times. At this layer, we introduce a planning arbiter known
as the Whole Body Planner (WBP) (Kessens et al., 2020) in which coordinates arm movements
through a diversity of planners and movement profiles. Successive planning algorithms in the stack
enable a mobile manipulator’s prehensile manipulation of objects within its task space. Initially,
grasp planning using the Grasp Pose Synthesis (Detry et al., 2017) algorithm returns kinematically
feasible EE poses that are geometrically suited for our particular gripper within a selected region

4 Although we use the adverb “covertly,” we note that this specific behavior does not accurately represent the definition
of covert used in other fields. We simply use this as a stand-in to demonstrate the differences between simple obstacle
avoidance and semantic-aware planners.
5 https://github.com/ros/actionlib

Field Robotics, March, 2022 · 2:468–512

https://github.com/ros/actionlib


An Intelligence Architecture for Grounded Language Communication with Field Robots · 487

known as the region-of-interest (ROI) (Kessens et al., 2020). WBP then invokes two motion planning
algorithms in parallel: Anytime Repairing A* (ARA*) (Likhachev et al., 2004) and Generalized Lazy
Search (GLS) (Mandalika et al., 2019) to search for a solution on a graph in the 15-dimensional
configuration space of both arms and torso. The implementation is a Search-based Motion Planning
Library (SMPL)6 plugin for the MoveIt! (Chitta et al., 2012) framework, and a GLS7 plugin for the
AIKIDO8 framework, respectively. For detailed exposition of each algorithm, the reader is directed
to Mandalika et al. (2019) and Likhachev et al. (2004).

The second layer, which we call the “Intrinsic Layer”, runs underneath the “Extrinsic Layer”
and is responsible for reachability mapping based on inverse kinematics, and trajectory discretiza-
tion/following through a whole body controller termed Intrinsic Controller (IC) (Kessens et al.,
2020) and the open-source ROS Joint Trajectory Controller9. The IC is capable of performing
short Cartesian arm and base movements. A wrench reactive component of the IC counters reactive
forces and torques during motion, essentially creating a “software compliance.” This is achieved
by deflecting the goal pose of the Cartesian motion as a linear function from measured wrist
torques and a pre-specified compliance parameter. Such a strategy is particular useful during motion
with extended arms or with an object-in-hand. For general trajectory following, we use the Joint
Trajectory Controller.

The final layer, which we call the “Hardware Layer”, is where real-time motor control and state
estimation occur. Modular mechanisms and proprioceptive sensors use an EtherCAT server-client
interface.

3.3.5. Deliberate Interactive Estimation
The mission planner is required to robustly carry out high-level language commands, but the lack
of world knowledge, which is visually imperceptible or hard to estimate from noisy measurements,
leads to failures in synthesizing and executing plans robustly. For example, a robot asked to “Lift
the heavy suitcase” may not know which of several objects semantically identified as a “suitcase” is
heavy based purely on visual observations. For robust decision making in the absence of knowledge
provided by a human operator, we introduce a deliberate interactive estimator that incrementally es-
timates semantic knowledge from noisy language descriptions, physical interactions, and background
knowledge using our previous work. This section describes the deliberative interactive estimation
module, which is an extension of our previous work on Bayesian multimodal semantic-knowledge
estimation that appears in Arkin et al. (2020).

The estimation of semantic knowledge is challenging as it involves distilling high-level semantic
knowledge from low-level sensory observations or language utterances. Conventional grounding
approaches use the declarative knowledge in utterances as correct semantic knowledge for task
execution (Matuszek et al., 2012; Thomason et al., 2016; Paul et al., 2017; Kollar et al., 2013;
Perera and Allen, 2013). Similarly, low-level noisy sensory observations (e.g., vision or force/torque)
have been directly used for estimating world knowledge such as traversability (Bhattacharjee et al.,
2014) or abnormality (Park, 2018). In contrast, our method incrementally updates the semantic
knowledge from language and force/torque interactions to make the mission planner more robust to
inaccurate or incorrect instructions.

The mission executor triggers an interactive estimation action. Then, our estimator computes
the probabilistic semantic knowledge state Kt at time t given past linguistic inputs Λ0:t, physical
interaction measurements Z0:t, and the space of grounding symbols Γ: p(Kt|Λ0:t,Z0:t,Γ). The
knowledge state Kt represents latent object attributes such as “emptiness.” We model the likelihood
of the attribute using a beta-distribution parameter αt. By introducing the correspondence variable

6 https://github.com/aurone/smpl
7 https://github.com/personalrobotics/gls
8 https://github.com/personalrobotics/aikido
9 https://github.com/ros-controls/ros_controllers
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Figure 7. Experiment demonstrating the deliberate interactive estimation with physical interaction. The Husky
robot with a UR5 arm estimates the latent semantic attribute “emptiness” by pushing the barrel.

Φt used in grounding processes, we can factor the distribution over Kt as

p(Kt|Λt, Zt, αt−1,Γ) =
∑
Φt

p(Kt|Φt, αt−1,Γ)︸ ︷︷ ︸
Knowledge Belief

Update

p(Φt|Λt, Zt,Γ)︸ ︷︷ ︸
Language &
Interaction
Groundings

.

(5)

Assuming the conditional independence between observations, we factor the language and interaction
groundings to p(ΦΛ

t |Λt,Γ) and p(ΦZt |Zt,Γ), respectively. The former factor models the factual
knowledge in declarative language utterances. The later factor models the correspondence between
interactive measurements and object attributes in groundings. We particularly train two hidden
Markov models that output the observation likelihoods p(Zt|mTrue) and p(Zt|mFalse) conditioned on
the presence and absence of the attribute, respectively. The likelihood ratio p(Zt|mTrue)/p(Zt|mFalse)
gives the likelihood of correspondence Φt. To update the knowledge belief, we incrementally update
the beta-distribution parameter αt−1 with respect to the binarized correspondence variable.

Our experimental studies in Figure 7 shows that, when a user provides incorrect declarative
knowledge, such as describing a barrel as full when it is, a robot can quickly correct and report the
true latent property to the user after manipulating the barrel. This work marks a qualitative change
of robot capabilities by having a shared mental model in human-robot team scenarios.

3.3.6. Scene Description
The scene description module is where the last of several actions that the robot can perform
is implemented. The ability to summarize the salient information in a scene is important for
several reasons. First, it can be prohibitively expensive to stream high-resolution images over a
low-bandwidth network. Second, streaming images still requires that the human visually inspect
and process these images. A robot that is able to translate the information contained in an image
and provide that information in text or audial form to a human operator may be enabling in a
number of collaborative robot scenarios. Most current research in image or scene captioning focuses
on the fluency of the generated language but not on the utility of the generated description.

The approach explored here applies the technique described in Tian and Oh (2019) that combines
sequential and compositional models by following a word-by-word generation process and combining
grounded attributes from specialized modules. This approach follows the idea of the Neural Module
Networks (NMNs) (Andreas et al., 2016) used for the visual question answering problem, where each
module is responsible for a specialized functionality and the final result is a dynamic composition
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of different modules. In this approach, Compositional NMNs are designed for image captioning to
generate a final caption by dynamically attending to different modules. The attributes of this model,
therefore, have a hierarchical dependency on and are grounded to the proposed regions. For example,
this model should generate descriptions like “a red apple” instead of “a piece of fruit” and “three
people” instead of “a group of people.”

The model used in the scene captioning module consists of three components: Recurrent Neural
Network (RNN) Trio, Stacked Noisy-Or Object Detection, and Modular Attribute Detection.
The object and attribute detection of the stacked noisy-or object detection mechanism and the
modular attribute-detection mechanism makes up the compositional component while the RNN trio
incorporates the detection results to generate a sentence in a sequential manner. Mathematically,
this can be seen as computing a distribution, Pmt over labels for module m at time t using a
softmax-activated function denoted by fm:

Pmt = fm(ṽt, hst−1, w
obj
t ). (6)

The outputs of the modules are word vectors wmt = EmP
m
t , where Em is the word embedding

matrix for module m. The compositional module attention mechanism selects which model to
use depending on the context. Inspired by Lu et al. (2017), the implementation used an adaptive
attention mechanism and a softmax operation to get an attention distribution of the modules:

zt = W>z tanh(Wmw
m
t +Wgh

s
t−1) (7a)

αt = softmax(zt) (7b)

ct =
k∑
i=1

αt,iw
i
t (7c)

where wmt ∈ RDvoc×k is the module network outputs at time t. k denotes the number of modules in
consideration. We add a new element winit

t = Eyinit
t to the attention formulation. This element is

the word vector of the initial estimation of the next word from the V-LSTM.

α̂ = softmax
(
[zt;W>z tanh(Wiw

init
t +Wgh

s
t−1)]

)
(8a)

βt = α̂[k + 1] (8b)

ĉt = βtw
init
t + (1− βt)ct (8c)

Depending on the context, the network composes a different set of modules to obtain word-vector
ĉt ∈ RDvoc for the S-LSTM.

The model implemented for the experiments in Section 5.6 uses a Faster-RCNN in conjunction
with a Resnet-101 backbone (He et al., 2016) to segment an image into a set of regions that likely
contain objects of interest and encode each region r as a fixed-length feature vector {v1, . . . , vDr} ∈
RDv where Dr is the number of regions, and Dv, the size of the feature vector. Similar to Anderson
et al. (2016), the vocabulary is divided into meaningful subcategories made from an object set and
five attribute sets which are color, size, count, spatial relationship, and semantic relationship. The
implementation used six-word lists based on word occurrence frequency in the training data while
the object set consists of visual nouns and the other attribute sets consist of adjectives (e.g, “red”,
“green”, and “blue” for the color set). The model used five modules corresponding to color, count,
size, spatial relationship and semantic relationship object attributes. All modules are implemented
as two-layer fully connected networks. An example of a scene description output from an image
input can be found later in Section 5.6.

4. Experimental Design
The experimental evaluation of the proposed intelligence architecture focused on different forms
of studies that quantify aspects of the grounded language communication pipeline and study
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how information traces through the architecture under different experimental conditions. Several
component-level studies on the utility of the MMI and the performance of the language model
were designed to provide insight into the runtime performance and capabilities on the resulting
system. The language study evaluated the performance of the DCG for understanding and generating
language. The MMI study was designed as a human subjects experiment at a urban terrain facility
to evaluate the usability of the MMI for completing tasks with a robotic teammate. The study
investigated the performance of the speech processing capabilities designed to support exchange
of spoken commands and outcomes of a small-scale field evaluation of the MMI. This study
involved two human subjects and explored twenty-four spoken commands tested in naturalistic
settings featuring audial artifacts such as background speech and ambient outdoor noise. Several
system-level experiments on the entirety of the architecture were designed to investigate whether
the system was capable of handling scenarios that required more complex interactions in the
robot intelligence architecture. First, a series of statements and instructions are provided to a
mobile manipulator to study the information routing in activities related to deliberative interactive
estimation. In this experiment information is routed back to the operator when an inconsistency is
observed with a statement concerning declared knowledge. Second, high-level guidance is provided
to a separate mobile manipulator that is sequenced by mission and manipulation planning for the
purpose of clearing a piece of debris from a route. Lastly, a series of commands involving spatial
navigation and scene description is performed to evaluate the robot’s ability to navigate to regions
in reference to objects grounded by their spatial arrangement and generate reasonable descriptions
of observed imagery. In each of these the intelligence architecture from Figure 1 is annotated with
how information was routed through the modules in each of these experiments.

The language model for the experiments used a synthetic corpus consisting of 964 annotated
instructions that mimic the speech patterns observed in earlier published studies on natural language
understanding (Paul et al., 2016, 2018). The corpus consisted of aligned instructions, parse trees,
environment models, and symbols corresponding to each phrase in the sentence. These symbols
represented concepts required for navigation, manipulation, and mobile manipulation that the robots
could perform in environments and scenarios similar to the ones explored in these experiments. For
example, the instruction “drive to the leftmost barrel” described earlier in Sections 3.2.1 and 3.2.2
would result in a root-level symbol for an action of type “navigate” with a goal defined by a uniquely
labeled object with a semantic class of “barrel” that is resolved by the object’s spatial relationship
to other barrels and the robot.

Field experiments were performed at two different locations with urban environmental features
(buildings, doors, roads, etc.) with three different mobile robot platforms. The three platforms
utilized in these experiments are shown in Figure 8. The first platform, a Clearpath Robotics
Husky A200 Unmanned Ground Vehicle, was used in the multimodal interface evaluation and
spatial navigation and scene description experiments. The second platform, a Clearpath Robotics
Husky A200 mobile manipulator outfitted with a Universal Robotics UR5 manipulator, Robotiq
FT300 force/torque sensor, and a three-fingered Robotiq Adaptive Robot Gripper, was used for the
experiments involving deliberative interactive estimation. The third platform, the RoMan mobile
manipulator (Kessens et al., 2020), is used in the language guided mobile manipulation experiment.
All three robots shared a common intelligence architecture and language model, differences appear
only at the level of implementing navigation and manipulation behaviors based on the physical and
hardware interface differences between platforms.

5. Experimental Results
To evaluate the performance of the architecture, we performed a series of experiments that quantify
the functionality of specific components and exhibit specific behaviors enabled by the proposed
architecture. A quantitative evaluation of the natural language understanding model considered by
this framework measures the accuracy and runtime of two different variations of the DCGs applied
in this framework using an approach similar to the one explored in Paul et al. (2018). A small
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(a) Clearpath Robotics Husky A200 Un-
manned Ground Vehicle

(b) Clearpath Robotics Husky A200 mo-
bile manipulator

(c) RoMan mobile manipulator

Figure 8. The three field robots used in the experimental evaluation of the proposed robot intelligence
architecture. All three of these platforms used the same instance of the developed intelligence architecture,
differing only at the layer of implementation of navigation and manipulation behaviors because of physical and
hardware interface differences between platforms.

user study of the MMI explores user sentiment of two study participants while also demonstrating
a sequence of examples that the system was capable of performing. This is followed with four
component-level demonstrations involving spatial navigation and scene description, deliberative
interactive estimation, language-guided mobile manipulation, and disambiguation of ambiguous
instructions that show the different information paths through the architecture.

5.1. Language Model Quantitative Evalution
The nature of the symbolic representation utilized throughout this program is different than that
of corpora explored in previous model-focused quantitative evaluations (Paul et al., 2016, 2018).
Those previous corpora included spatial semantic concepts representing abstract spatial concepts
for collections of objects, such as rows of chairs of columns of blocks; the resulting computational
complexity of reasoning over the powerset of combinations of objects was a core motivation
for the development of the Adaptive Distributed Correspondence Graph formulation and model
described in Section 3.2.2. While the intelligence architecture is capable of handling such abstract
spatial concepts, the corpus used in these experiments did not include examples that require these
symbols.

However, the Adaptive Distributed Correspondence Graph formulation of a discrete set of abstract
symbols is usefully applicable to other kinds of semantic concepts that are similarly conditioned on
the expression of “concrete” grounded symbols. As described in Section 3.2.2, the space of symbols
representing the meaning of ambiguous utterances for object or action references can be dynamically
constructed during inference according to the expression of such concrete symbols. For emphasis, the
key similarity between these abstract symbols for ambiguity and the abstract symbols for collections
of objects is that the set of possible symbols can be approximated to a reduced set resulting in
improved runtime performance. A key difference, however, is the relationship between the size of
full abstract space and the number and type of objects of in the world; the collections of objects
grow as the powerset of objects whereas the symbols for ambiguity grow linearly with object type.
Due to this difference in the nature of symbols, it is interesting to perform a quantitative evaluation
of the difference in learned model performance (DCG vs ADCG) from the corpora used in these
experiments for both accuracy and runtime in the same way as that performed by Paul et al. (2016)
and Paul et al. (2018).
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Table 4. Inference runtime (seconds) comparison

Objects Instructions Worlds DCG ADCG

0–9 872 242 4.4595± 2.0069 0.4649± 0.2662
10–19 49 28 4.7059± 2.0050 1.0131± 0.4223
20–29 20 3 4.5012± 2.4354 1.3574± 0.6943
30–39 8 7 5.3966± 1.9183 2.3253± 0.8317
40–49 2 2 6.7120± 2.2977 3.5078± 1.3276
50–59 9 7 7.8075± 2.5559 4.3373± 1.4423
60–69 2 1 9.1473± 0.5611 5.3368± 0.4257
70–79 1 1 4.7351± 0.0000 3.1193± 0.0000
80–89 — — — —
90–99 1 1 5.7587± 0.0000 4.1047± 0.0000

The quantitative evaluation consisted of first training log-linear models using incrementally
increasing partitions of the corpus as a training dataset and then recording the accuracy and runtime
performance of the models on the remaining corpus examples as a validation set. The training dataset
partitions ranged from 20% of the corpus to 80% of the corpus, increasing in increments of 10%. For
each partition size, 10 randomly sampled sets of examples were created and used as a novel training
set for a trial; as such, the evaluation consisted of 70 different log-linear models each trained using
a different training set and evaluated on the specific corresponding held-out validation set.

Figure 9 illustrates results from the quantitative experiments of the language model studied in this
paper. The average accuracy of both the DCG and ADCG for incrementally increasing training set
partitions is shown in Figure 9(a). This plot compares the average performance of the DCG and the
ADCG with respect to two accuracy measures (root phrase and complete parse tree) on validation
datasets for incrementally increasing training set partition sizes as described. We use two measures of
accuracy, “root phrase accuracy” and “complete parse accuracy”, to better facilitate the constituency
parse tree representation of language used in these models. “Root phrase accuracy” compares only
the inferred symbol set of the root phrase in the tree to the ground truth; any mislabeled phrases
lower in the tree are ignored. The “root phrase accuracy” is pragmatically interesting because the
inferred solution for the root is typically the information used by the intelligence architecture, making
the system robust to errors that may be due to the conditional independence assumptions of the
language models. “Complete parse accuracy” compares the inferred symbol set of each phrase in the
tree to the ground truth; if any phrases are mislabeled, it is considered incorrect. The “complete parse
accuracy” is a more demanding measure of accuracy and provides further insight into the models’
performance than the “root phrase accuracy”. Overall, the DCG and ADCG performance on both
measures of accuracy are very similar and well within the error bars of each other; this is consistent
with our expectations and the results of previous model evaluations performed by Paul et al. (2016)
and Paul et al. (2018). The runtime performance of these language models is predominantly a
function of the size of the space of symbols being searched over. In the case of DCG, the search
space consists exhaustively of every possible symbol; in the case of ADCG, a reduced search space
is dynamically constructed according to expressed concrete symbols. Therefore, it is interesting to
plot the size of the complete search space against the instantiated search space, or the actual space
searched during inference. Figure 9(b) plots the size of the instantiated search space for both DCG
and ADCG as a function of the total search space size.

While the search space size is useful for understanding a difference in the models’ performance,
it is important to also report the actual corresponding runtimes. The expectation from the results
in Figure 9(b) is that ADCG will have consistently lower runtimes than DCG. The difference in
runtime performance between the two models should exhibit a similar kind of offset as seen in the
instantiated search space sizes, and this difference should approximately reflect the runtime cost of
searching over those additional symbols. Table 4 shows the runtime performance for 964 instructions
across 293 unique worlds.

Field Robotics, March, 2022 · 2:468–512



An Intelligence Architecture for Grounded Language Communication with Field Robots · 493

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Training Fraction

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
T

es
t S

et
 A

cc
ur

ac
y

Mean Test Set Accuracy vs Holdout

DCG Complete
DCG Root
ADCG Complete
ADCG Root

(a) The root phrase accuracy and complete parse tree ac-
curacy of DCG and ADCG language models on validations
for varying training set partition sizes.

0 0.5 1 1.5 2 2.5 3

Total Search Space Size 104

0

0.5

1

1.5

2

2.5

3

3.5

In
st

an
tia

te
d 

S
ea

rc
h 

S
pa

ce
 S

iz
e

104 Search Space Comparison

DCG
ADCG avg

(b) Plot comparing the total size of the search space to the
instantiated search space, or space used during inference,
for both DCG and ADCG.

Figure 9. A comparison of accuracy and search space sizes for the quantitative evaluation of DCG and ADCG
models. The plot on the left shows the root and complete parse tree accuracy of the DCG and ADCG models
were shown to be comparable for varying sizes of training fractions, showing that the approximations of the
symbolic representations for ADCG implemented to improve the efficiency of probabilistic inference do not have
a significant negative impact the accuracy of probabilistic inference. The plot on the right shows the size of
the search spaces considered by DCG and ADCG during these experiments. The search space used by DCG
during inference is the complete space. The search space used by ADCG during inference is reduced according to
expressed concrete symbols. Due to the nature of the abstract symbols used for ambiguity, the ADCG instantiated
search space trends with effectively the same slope as the complete search space but with a constant offset.

5.2. Language Generation for Disambiguation
As initially described in Section 3.2.4, the natural language generation module in the intelligence
architecture is capable of addressing situations in which an utterance is underspecified in such a way
as to be ambiguous. For example, consider the scenario shown in Figure 12(a) in which there are
a variety of objects in the world including three cones in front of the robot. The command “drive
to the cone” is underspecified in that it is ambiguous which of the three cones is being referenced;
note, however, that other semantic aspects of the command are not ambiguous, namely it is a
navigation command, as opposed to a report or follow command, and the reference object is a cone,
as opposed to a barrel or crate object that are also in the scene. Because the reference object is
underspecified, the robot cannot complete the intended action. In situations like this, the natural
language understanding module will ground to a set of symbols representing the unambiguous
semantic information before prompting the natural language generation module to pose a clarifying
question to the operator.

A simple solution could consist of identifying the ambiguity and asking a generic clarifying
question, such as “what object did you say?”. Instead, the natural language generation module uses
the proactive symbol grounding module to help invert the language model and generate the most
likely phrase associated with each candidate object. The candidate objects are found by selecting
each object in the environment that matches the available unambiguous semantic information, e.g.,
that the object is a cone. Once the best phrase for N candidate objects is found, a question template
“Did you mean {phrase for candidate 1}, {phrase for candidate 2}, ..., {phrase for candidate N}” is
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(a) A Husky and environment using Gazebo. The world
contains one construction cone, two cardboard boxes, two
wooden crates, three construction barrels, several street-
lamps, and a variety of buildings with doors and windows.
No command has been given.

(b) The world state after the robot completed its goal.
The initial command “drive to the cone” was unambiguous
because there is a single cone in the world. The natural
language understanding module produced the illustrated and
achieved goal state.

Figure 10. The baseline for grounded language communication experiment where there is only one candidate
object of the referenced type.

populated and published to the multimodal interface to provide the operator with multiple options
to choose from. The operator can merely select or speak the phrase matching the intended object
rather than repeat the full instruction; the natural language understanding module will associate
the new input with the context of the previous utterance.

This capability of dialogue interaction for disambiguation was demonstrated both in simulation
and in the field. For a baseline, a scenario where no disambiguation is required was considered. This
environment, which consisted of one cone and multiple other objects, is illustrated in Figure 10(a).
The system grounded the instruction “drive to the cone” in 0.14 seconds with the ADCG model to an
unambiguous action symbol with the single cone object illustrated in this figure as the goal object.
After the natural language understanding module finished grounding this instruction, it passed the
inferred symbol to a mission planner to plan a sequence of actions to navigate to this object. The
mission executor and navigation planner then planned and executed this action, resulting in the
final state of the simulated system shown in Figure 10(b).

To test out the system’s capability to resolve an ambiguous instruction, an additional cone
was inserted into the simulation environment as illustrated in Figures 11(a) and 11(c). The same
command used in the baseline, “drive to the cone”, was again provided as an input into the
system architecture and parsed accordingly. Two disambiguating experimental trials were performed
in which the operator’s clarifying response refers to a different cone. Using the ADCG model,
the natural language understanding module grounded to an ambiguous symbol indicating that a
“navigate” action was received for an object with “cone” object type, taking 0.16 seconds for the
first trial and 0.17 seconds for the second trial. The presence of the ambiguous symbol directed the
architecture to use natural language generation to resolve the ambiguous instruction. In both cases,
the natural language generation module determined the candidate objects, found the most likely
phrase associated with each, and published a query to the human operator.

The initial state of the first experimental trial is shown in Figure 11(a). The process for finding the
candidate objects took 0.003 seconds and correctly identified the two cones in front of the robot as
the candidate cone objects. The natural language generation module searched 551 phrases in 174.855
seconds and generated unique descriptions for each of the two cones in the scene. The most likely
phrase for the cone that is furthest to the robot’s left was “the far cone” and the most likely phrase
for the cone on the robot’s right was “the right cone”; these results are sufficiently disambiguating
from the robot’s perspective of the world. The system asked of the operator, “Did you mean the far
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cone or the right cone?” The operator replied, “the far cone”, resulting in a grounded navigation
action with the referenced object as the navigation goal as illustrated in Figure 11(b). The initial
state of the second trial is shown in Figure 11(c). The natural language generation module found
the candidate objects in 0.003 seconds before again searching 551 phrases in 186.026 seconds. The
most likely expressions “the left cone” and “the rightmost cone” were found for the objects that were
previously referred to as “the far cone” and “the right cone” respectively from the first experimental
trial. These expressions are again consistent with the environment model from the robot’s perspective
and help illustrate the diversity of expressions that the natural language generation could generate
with the grammar used. The system asked of the operator, “Did you mean the left cone or the
rightmost cone?” The operator provided the response “the rightmost cone”, resulting in an action
symbol with that uniquely defined object as the navigation goal as shown in Figure 11(d). These
two experimental trials interestingly demonstrated ways in which the natural language generation
module can produce different but effective disambiguating natural language descriptions of the same
objects. While the system emits the most likely phrases for each candidate object, we observed a
number of uniquely identifying phrases for objects that had high likelihoods; the variation in best
phrases can be attributed to slight differences in the initial position and orientation of the robot in
each of these simulated experiments.

One last example involving three cones in the gazebo simulation environment was performed,
as seen in Figures 12(a) and 12(b). In this scenario, the robot’s environment model includes three
construction cones in front of the robot, two cardboard boxes, two wooden crates, three construction
barrels to its far left, several streetlamp posts, and a variety of buildings with doors and windows.
Like the previous scenarios, the initial provided utterance was “drive to the cone” and was correctly
associated with a symbol representing ambiguity while preserving the unambiguous semantic content
of a “navigate” action and a “cone” object type; this process took 0.18 seconds with the ADCG
model. Upon grounding to an ambiguous symbol, the natural language understanding module
triggered the natural language generation module to determine the candidate objects, find the most
likely phrase associated with each, and publish a query to the human operator. The process for
finding the candidate objects took 0.005 seconds and correctly identified the three cones in front of
the robot as the candidates. The inverse semantics process iterated through 551 generated phrases
and took 205.42 seconds with no idle system time for the proactive symbol grounding module to
provide bootstrapping. The slightly longer runtime of natural language generation with respect to the
two cone examples explored in Figure 11 can be attributed to the larger symbolic representation that
resulted from the addition of a cone object. The resulting best phrases generated for the candidates
were “the leftmost cone”, “the middle cone”, and “the rightmost cone”; these phrases were used to
ask the user “Did you mean the leftmost cone, the middle cone, or the rightmost cone?” The user
responded, “the rightmost cone.” The natural language understanding module correctly grounded
the phrase “the rightmost cone” in the context of the prior utterance to produce a “navigation”
action with the rightmost cone as the navigation goal.

Another disambiguation example scenario from a series of field demonstrations can be seen in
Figure 13; this scenario was the first vignette in a continuous sequence of language-driven behaviors.
This environment was set up with bicycles, motor bikes, fruit stands, gas tanks, tables, barrels, and
other types of objects. For this vignette, there are three barrels in front of the robot’s initial starting
position. A human teammate gave the command “go to the barrel” which was correctly associated
with a symbol representing ambiguity while preserving the unambiguous semantic content of a
“navigate” action and a “barrel” object type. The natural language generation module correctly
identified the three barrels as candidate objects before triggering the proactive symbol grounding
module’s inverse semantics process to find the most likely phrases “the leftmost barrel,” “the barrel
in the middle” and “the right barrel.” Given these phrases, the language generation module queried
the human “Did you mean the leftmost barrel, the barrel in the middle, or the right barrel?” The
human responded “the leftmost barrel” which was correctly grounded in the context of the initial
ambiguous command to produce an action symbol indicating a navigation action with the leftmost
barrel as a goal. Once completed, the human-robot team continued with rest of the demonstration.
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(a) A Husky and environment using Gazebo. The world
contains two construction cones, two cardboard boxes, two
wooden crates, three construction barrels, several street-
lamps, and a variety of buildings with doors and windows.
No command has been given.

(b) The world state after the robot completed its goal.
The initial command “Drive to the cone” was ambiguous.
The inverse semantics process generated the disambiguating
question “Did you mean the far cone or the right cone?”. The
reply “the far cone” produced the illustrated and achieved
goal state.

(c) A Husky and environment using Gazebo. The world
contains two construction cones, two cardboard boxes, two
wooden crates, three construction barrels, several street-
lamps, and a variety of buildings with doors and windows.
No command has been given.

(d) The world state after the robot completed its goal.
The initial command “Drive to the cone” was ambiguous.
The inverse semantics process generated the disambiguating
question “Did you mean the left cone or the rightmost
cone?”. The reply “the rightmost cone” produced the il-
lustrated and achieved goal state.

Figure 11. A grounded language communication experiment involving disambiguation with two candidate
objects of the referenced type.

5.3. Multimodal Interface Evaluation
To study the user experience with the MMI a scenario was designed that would involve language
interaction with a field robot and a questionnaire to be completed after performing the tasks. After
agreeing to participate in the study, participants were given a brief training session on the MMI
that was intended to familiarize them with the operation of the device and what they should expect
from the commands issued to their robotic teammate. Participants would interact with the robot
and MMI in a manner similar to that illustrated in Figure 2 where the operator can observe both
the robot and the MMI, give voice commands to the MMI, and receive feedback from the MMI. An
illustration of the sequence of tasks that the robot would need to perform is shown in Figure 14.

The protocol involved the human providing seven instructions through spoken language prompted
by actions that the robot would perform in the environment. The first command involved telling the
robot to “drive to the nearest barrel” which would cause the robot to interpret the scene from current

Field Robotics, March, 2022 · 2:468–512



An Intelligence Architecture for Grounded Language Communication with Field Robots · 497

(a) A Husky and environment using Gazebo. The world
contains three construction cones, two cardboard boxes, two
wooden crates, three construction barrels, several street-
lamps, and a variety of buildings with doors and windows.
No command has been given.

(b) The world state after the robot completed its goal.
The initial command “Drive to the cone” was ambiguous.
The inverse semantics process generated the disambiguating
question “Did you mean the leftmost cone, the middle cone,
or the rightmost cone?”. The reply “the rightmost cone”
produced the illustrated and achieved goal state.

Figure 12. A grounded language communication experiment involving disambiguation with three candidate
objects of the referenced type.

Figure 13. A robot field experiment scenario of a street market with various realistic entities, such as bicycles,
shops, motor bikes, fruit stands, among others. The perspective is captured from a camera mounted on the front
of a Clearpath Husky A200 Unmanned Ground Vehicle. Prominently displayed are three barrels directly in front
of the robot.

sensor observations and then drive to the specified barrel and halt. The operator was then guided
to “drive behind the left barrel” which again required that the robot interpret the meaning of the
instruction in the context of the environment and stop after navigating behind the object referenced
by the instruction. The third task involved asking the robot to “report”, which is interpreted by the
architecture as a behavior that calls the scene description module for a natural language description
of the current scene. After the description is received and displayed on the MMI, the robot was
to be told “your location is waypoint Alpha”, which creates a semantic description of this metric
location in the environment model and provides feedback to the operator on this behavior through
the MMI. The fifth command involves telling the robot to “drive to the nearest doorway” which
causes the robot to again drive to that location that it interprets as “the nearest doorway” in the
map and stop after it reaches that location. The human teammate was then told to walk over to the
robot and position the robot in front of the main camera and issue the command “follow me”. The
human teammate was then told to walk down the main avenue of the urban test site approximately
thirty feet and stop. Given the commands, the robot followed the human operator at a safe distance
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Figure 14. An illustration of the scenario used in the component level study of the MMI.

and stopped when the human operator had stopped. The last command issued to the robot was
“drive to waypoint Alpha” which should cause the robot to navigate back to the human specified
landmark in the environment model.

Since the study only enrolled two participants, only qualitative observations are reported. The
enrolled participants were between the ages of 20 and 50, had no prior military experience, very
highly familiar with robotics, and had experience with the robot platform. Study participants
included RCTA personnel who were blind to study hypotheses. Generally, the participants in
this experiment indicated that they had positive experiences using the MMI to interact with
their robotic teammate. In particular, participants found the system to be straightforward to
learn, and appreciated the modes of feedback that were provided (visual images, natural language
communications, world map representation). Though the participants did not suggest that the
system was very innovative or especially pleasing to use, those outcomes may be the result of prior
experience with robotics and robotics interfaces. Another interpretation of this finding could be a
result of the underlying design meeting user needs in such a way that it was “obvious” the interface
behaves in the way it does for the given scenario. Combined with successful task completions, the
positive experiences of the participants indicate that the MMI was straightforward to learn and
usable for supporting human-robot teaming.

5.4. Deliberative Interactive Estimation
To evaluate the behaviors of the deliberative interactive estimation model, we devised an experiment
with the Husky A200 mobile manipulator that involved declared facts and physical interaction
with these objects. The flow of information through the architecture is shown in Figure 15, which
begins with the blue path of text coming from the multimodal interface and objects from the
semantic perception modules that are passed through the intelligence world model, parsing and
declarative knowledge, proactive symbol grounding, and natural language understanding modules
to interpret facts that update the robot’s state of the world and missions for the robot to perform.
These activities involved both navigation and deliberative interactive estimation actions. The robot
tracks inconsistencies in the human’s mental model of the world by observing when facts expressed
by the human operator are inconsistent with the robot’s own observations. When this occurs the
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Figure 15. The dataflow for the deliberative interactive estimation experiments.

natural language generation module, which tracks these facts in the context of observations made
by the deliberative interactive estimation module, to generate a unique description of the object
and the observed fact by inverting the natural language understanding module. This return path of
information to the human operator, shown in red, is sent through the intelligence world model to
the multimodal interface to correct the human’s mental model of the environment.

A series of images from this experiment are shown in Figure 16. The experiment began with a
human expressing a series of facts declaring that “the leftmost barrel is full” and “the rightmost
barrel is full” where “the leftmost barrel” and “the rightmost barrel” were uniquely resolved by the
natural language understanding module’s ability to resolve spatial relationships of objects of the
same semantic class. The robot was then instructed to “push the leftmost barrel” which caused the
robot to physically interact with the barrel to the robot’s left. The robot deploys its manipulator
and makes an observation of the “fullness” of the object by the learned model of that semantic
property using information from the force/torque sensor mounted between the gripper and the
arm. The robot does not believe this object to be full based on the reaction force observed at
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(a) The robot is initially provided with
the statements “the leftmost barrel is
full” and “the rightmost barrel is full”.

(b) The robot deliberatively interacts
with the barrel to the robot’s left given
the robot instruction “push the leftmost
barrel”.

(c) The robot states “the fact the left-
most barrel is full is inconsistent with
world model” after estimating the se-
mantic state as being inconsistent with
the world model. The robot also inter-
nally updates it’s representation of that
object.

(d) The robot is provided with the in-
struction “push the full barrel” which is
now ambiguous because after interactive
estimation it no longer considers “the
leftmost barrel” as being full.

(e) The robot deliberatively interacts
with the object originally identified as
“the rightmost barrel”.

(f) The robot finds that the human-
provided description is consistent with
the interactive measurement of the ob-
ject and provides no report back to the
operator at the conclusion of the action.

Figure 16. Excerpts from experiments on deliberative interactive estimation with a mobile manipulator.

the wrist from the pushing action with the arm and therefore generates a correction back to the
human. In this experiment that correction came in the form of a template-based statement that
prepends the tracked fact with “the fact” and appends the tracked fact with “is inconsistent with
world model”. The robot is then instructed “push the rightmost barrel” which caused the robot to
navigate to the other barrel and perform the same deliberative interaction behavior. The robot finds
that this observation is consistent with the human’s declared fact and therefore does not generate
a corrected fact through the natural language generation pipeline shown in Figure 15. Variations of
this experiment are explored in more detail in Arkin et al. (2020) where a more natural description
of the corrected fact (e.g., “heavy” vs “light” instead of “heavy is inconsistent with world model”)
is able to be generated by a more complete inverse semantics model used by the natural language
generation module.

5.5. Language Guided Mobile Manipulation
To assess the ability of the architecture to interpret and execute a mobile manipulation command,
a scenario was constructed that required a robot to remove an obstruction from a narrow passage
between two buildings. To demonstrate how pithy commands could be used to sequence complex
behaviors, we provided the robot the instruction “clear the debris”, a two-phrase utterance that
grounded “the debris” to the object placed in the middle of the two barriers as illustrated in
Figure 18. This action shows the simplest flow of information through the architecture, annotated
as the blue path in Figure 17, starting with the instruction parsed and sent through the intelligence
world model to the parsing and declarative knowledge module to generate the parse tree that is
sent to the natural language understanding module. The natural language understanding module
grounds the instruction to a symbol describing a “clear” action with a grounded instance of an
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Figure 17. The dataflow for the language guided mobile manipulation experiment.

object with the semantic label “debris”. The manipulation planner receives this information, plans
a sequence of actions to satisfy the terminal boundary state described by this activity, and sends
control inputs to the robot whose state updates are processed by the mission executor to monitor
for mission completion.

A sequence of three images showing initial, intermediate, and terminal states is shown in
Figure 18. In the image on the left we see a human operator giving the RoMan robot the instruction
“clear the debris” in an environment model that recognizes the piece of metal truss in the lower
right corner of the image as being “the debris” and other objects as barriers. The “clear” activity
involves navigation to, grasping, lifting, and placing of the object in a different location. The middle
image shows the approach to the debris object where a grasp is planned with the observed geometry
of the object. The image on the right shows the location of the place activity in a location different
than the object’s initial state, ending the “clear” behavior.
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(a) The robot and human operator at
their initial locations with an obsta-
cle present in the desired path of the
robot

(b) The robot grasps the object to
remove after given the language com-
mand “clear the debris” to the MMI

(c) The robot places the object away
from the initial location to permit
passage through the corridor

Figure 18. A sequence of robot motions in response to the human-provided command “clear the debris” through
the MMI. The symbols inferred from this utterance in the context of the perceived environment invoke the mission
planner to construct a behavior tree that directs the manipulation stack to grasp, lift, move, and place an object
inferred by semantic perception to be a piece of debris far from the initial location.

5.6. Spatial Navigation and Scene Description
Experimental results of the scene description module show that our model achieves both the fluency
of sequential models and the specificity of compositional models. A detailed exploration of such scene
descriptions can be found in Tian and Oh (2019). Specifically, our approach excels at including
fine-grained details such as counting that are generally avoided or overlooked. The framework is
easily expandable to include additional functional modules of more sophisticated designs. Improved
interpretability via visualized attention is another bonus because the model enables a quantitative
analysis of both visual and semantic information.

To evaluate the performance of spatial navigation and scene description on a field robot, a
sequence of language commands was provided to a Husky A200 unmanned ground vehicle in a
visually interesting scene with objects that are not uniquely identified by a semantic class in the
instance of the world model constructed from perception and the time of human-robot interaction.
Excerpts from the MMI during this interaction are shown in Figure 20, which show both the MMI’s
representation of the world model during the course of the interaction, the robot’s perspective taken
from a forward-facing RGB-D camera mounted on the top of the robot, and the received instructions
and reports back from the robot.

Additional spatial navigation experiments were carried out on the Husky A200 unmanned ground
vehicle to demonstrate the use of natural language to switch between the system’s two metric
planners discussed in Section 3.3.3. Using the same field environment previously discussed for the
scene description experiments, a language command was provided to the unmanned ground vehicle
and the SBPL-based metric planner would begin navigating to the defined location. During the
execution of the planned trajectory the language command “Go covertly” was provided to the robot,
causing it to transition to the learned IOC planner that considers terrain and object perception
information to execute a context-aware navigation behavior. In these experiments, the learned IOC
behavior deployed on the robot planned paths near the edge of the road. When the robot was
given the command “Go covertly,” it transitioned to the IOC planner but maintained the originally
specified waypoint destination.

Figure 21 shows examples of the Rviz display when running this navigation experiment. In the
top row, the Rviz displays for the two commands can be seen. In each image the most recent natural
language command provided to the system can be seen in the top left and the associated behavior
tree generated from this command is shown on the right. In the bottom row, the display shows a third
person view of the robot during experimentation, the robot’s map shown with objects and terrain
(grass is green and road is purple) from the world model, and the trajectories that were output by
each of the planners given the natural language commands. The blue trajectory illustrates the path
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Figure 19. The dataflow for the spatial navigation and scene description experiment.

originally planned to waypoint alpha, and the green trajectory represents the terrain-aware path
that was planned after given the “Go covertly” command. This experiment serves to illustrate that
a human teammate can command behavior preferences for navigation to better suit mission needs.
In this case, the robot may take a slightly longer path to the waypoint when operating “covertly”
but does so without traversing through a highly visible open area of the environment.

6. Discussion
The presented intelligence architecture represents a novel approach to grounded language commu-
nication with a field robot. Experiments with this architecture demonstrate that it is able to declare
information, ground statements to the physical environment, and resolve ambiguities or observed
discrepancies between mental models held by the operator and the robot. This architecture captures
visual and audial information from on-board sensors and human guidance through a multimodal
interface that can also report back information about the synthesized environment model that
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(a) The robot is initially provided with the instruction “go
behind the barrel on the left”

(b) The state of the robot after planning a route to
navigate to a location with a spatial relation behind the
leftmost barrel front the perspective of the robot

(c) The robot is provided with a new instruction “report” (d) The scene description action provides a response “a
house with a food truck parked in a field”

Figure 20. Screen captures from the MMI for a sequence of language instructions that guide the robot through
a pair of spatial navigation and scene description activities. First, the robot interprets the meaning of “go behind
the barrel on the left” by inferring a navigation goal as a position behind the objected identified by “the barrel
on the left” in relation to the robot’s current pose. The robot then is provided the command “report”, which the
natural language understanding module infers as an action symbol of type scene description. The mission planner
constructs a behavior tree that calls the scene description to provide publish a descriptive phrase based on the
current viewpoint, which is captured by the MMI and shown to the human operator.

the robot uses to make decisions. The diversity of instructions understood by the robot using a
corpus of annotated instructions, combined with a mission planning and execution layer enables
the robot to perform activities beyond waypoint navigation. This enables the robot to sequence
multiple, complex actions at scales that executing interdependent behaviors that are conditioned
on the closed loop execution of these actions. The experiments explored in this paper highlighted
or reinforced limitations that have motivated parallel lines of research in intelligent field robotics.
The grounded language communication models explored in (Duvallet et al., 2014; Hemachandra
et al., 2015; Patki et al., 2020) show how language can be used as a sensor to inform distributions of
environment models that may be only partially observable with visual perception. Similar in some
ways to the idea of declarative knowledge, spatial relationships between objects seen and unseen
can be gleaned from instructions provided by the human operator to infer distributions of objects
not directly represented in the environment model. If the robot in this framework were presented
the instruction “navigate to the barrel behind the building” without a notion of a “barrel” in the
environment model, it would not be able to ground the utterance to any object of that type and may
attempt to resolve this problem by posing a question dialogue between the robot and the operator
through the MMI. The alternative idea explored in this sequence of papers enables the robot to
hypothesize the presence of an object in a distribution of environment models using the spatial
relation between the unseen object (“barrel”) in relation to the observed object (“building”).
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(a) The robot is given the command “go to waypoint
alpha.”

(b) During execution of the path to waypoint alpha the
robot is given the command “go covertly”.

(c) Illustration of the two distinct paths generated by the different planners when navigating to the waypoint alpha.
The blue trajectory comes from the shortest path, obstacle avoidance planner, and the green trajectory is generated
by the learned behavior for terrain-aware planning.

Figure 21. Screen captures from the Rviz console during experiments that tested the transition between different
system planners based on natural language commands. The bottom left of each image shows the RGB camera
sensor input from the robot with object detections. The top row displays the natural language command and
associated behavior tree, and the bottom row illustrates the differing trajectories from each planner.

Another important limitation that we encountered during physical experiments is that tracking
errors in the perception system could result in very large environment models. This is problematic
because large environment models can grow the size of the symbolic representation used for symbol
grounding and degrade the efficiency of language grounding. Although application of the HDCG and
HADCG models would have made the system more robust to these disturbances, a re-examination
of how perception and language interact in this architecture is worthy of attention. Another recent
line of work (Patki and Howard, 2018; Patki et al., 2019) uses language to infer what classifiers
and observations are necessary to ground a particular instruction. This approach, which selectively
classifies objects based on their inferred need for interpreting the meaning of specific instructions,
removes the need to completely label all semantic objects the robot may encounter at all times
to generate a rich and complete world model. Similar to the way humans may selectively observe
objects of interest when entering a room, the robot uses a variation of the DCG with a symbolic
representation tied to the configuration of the perception system to determine the minimal but
sufficient environment representation necessary for interpreting the meaning of the sentence. The
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architecture described in this article uses a flat perception pipeline that consistently classifies a
set number of predefined classes at a fixed rate, irrespective of whether or not the intelligence
architecture needs such information to perform a sequence of activities or tasks.

We also observed that while the proactive symbol grounding approach described in this archi-
tecture does demonstrate the ability to facilitate natural language understanding and generation,
it opens up new and interesting questions about the space of environments for which an inferred
symbol will remain valid. Currently the proactive symbol grounding module is constantly grounding
expressions, regardless of whether or not their meaning has changed based on differences in the
robot’s pose or observed environments in the world model. An approach that could infer not only
what the most likely meaning of a symbol is, but the space of worlds for which that symbol would
remain the most likely symbol, would allow us to search, store, and replace more efficiently in the
space of proactively-grounded symbols. For example, if a robot takes only fifty seconds to populate
a space of proactively grounded symbols but the robot and environment are stationary for twice
that amount, it should not be necessary to reevaluate these symbols because the answer produced
by the model is deterministic when presented with the same environment and language inputs.

Lastly, we recognize that the architecture does not use an explicit dialogue manager that is able
to track the conversational ground. Other architectures, frameworks, and algorithms that focus
on the dialogue aspects of spoken or written communication (Scheutz et al., 2011, 2013; Williams
et al., 2016; Thomason et al., 2015, 2020) are more capable in tracking conversational dialog than
our design, which only tracks the context of recent utterances for disambiguation, corrections, or
sequencing of tasks. This architecture is also not currently capable of handling inputs from multiple
robot operators that may be needed in a human-robot team composed of multiple robots and
operators. Integration of the presented ideas involving efficient and effective symbol grounding and
generalization across multiple platforms in unstructured environments with a dialogue manager that
exploits richer linguistic representations (Bonial et al., 2020) may further advance this architecture
to one that is capable of such interactions.

7. Conclusion
This article has explored a unique robot-intelligence architecture capable of bidirectional, grounded
language communication with field robots. The framework, developed and evolved during the
course of the Army Research Laboratory’s Robotics Collaborative Technology Alliance program,
fuses information from both on-board sensors and human guidance to interpret instructions that
can define complex missions and individual actions. The architecture uses unique capabilities for
proactive symbol grounding, natural language generation, and deliberative interactive estimation.
These components provide the system with the ability to ask questions to resolve ambiguities in
human-provided statements and make corrections to imperfections in the human’s mental model
of the world. The architecture maintains an environment model that describes the metric and
semantic properties of objects and which is used pervasively by modules for language grounding,
mission planning, and motion planning. Component and system-level experiments of the same
architecture on three different field robots demonstrates the utility of these abstractions that
permit robot-specific implementations of general actions while exploiting shared models for mission
planning and grounded language communication. The integrated experiments described in this paper
demonstrate the progress made in grounded language communication over the past decade that
enables manned-unmanned teaming and the transition of robots from tools to teammates. Ongoing
and future work centers on the expansion of these capabilities in partially-observed and dynamic
environments and more intricate tasks that require coordination between multiple humans and
robots. Additional research directions also include models capable of acquiring and reasoning with
common sense, exploiting physical knowledge (e.g., tool use and affordances), richer modeling of
human intent (as plans or prior beliefs), and addressing the nuances and challenges of implicit and
situated human-robot communication in dialogue.
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