
Field Robotics, August, 2022 · 2:1754–1778 · 1754

Field Report

Proprioceptive Slip Detection for Planetary
Rovers in Perceptually Degraded
Extraterrestrial Environments
Cagri Kilic , Yu Gu and Jason N. Gross
Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506

Abstract: Slip detection is of fundamental importance for the safety and efficiency of rovers
driving on the surface of extraterrestrial bodies. Current planetary rover slip detection systems
rely on visual perception on the assumption that sufficient visual features can be acquired in the
environment. However, visual-based methods are prone to suffer in perceptually degraded planetary
environments with dominant low terrain features such as regolith, glacial terrain, salt evaporites,
and poor lighting conditions such as dark caves and permanently shadowed regions. Relying only on
visual sensors for slip detection also requires additional computational power and reduces the rover
traversal rate. This paper answers the question of how to detect wheel slippage of a planetary rover
without depending on visual perception. In this respect, we propose a slip detection system that
obtains its information from a proprioceptive localization framework that is capable of providing
reliable, continuous, and computationally efficient state estimation over hundreds of meters. This is
accomplished by using zero velocity update, zero angular rate update, and non-holonomic constraints
as pseudo-measurement updates on an inertial navigation system framework. The proposed method
is evaluated on actual hardware and field tested in a planetary-analog environment. The method
achieves greater than 92% slip detection accuracy for distances around 150 m using only an inertial
measurement unit and wheel encoders.

Keywords: planetary robotics, wheeled robots, terrestrial robotics, localization

1. Introduction
1.1. Motivation
Acquiring accurate slip detection is one of the critical capabilities required for planetary rovers (Hev-
erly et al., 2013) to maintain safer driving conditions. Wheel slippage is often unavoidable for a plane-
tary rover; it affects the traction and energy consumption and causes significant drift from the rover’s
planned path and poor results in the rover state estimates (Reina et al., 2010). Due to radiation-
hardened hardware requirements, slip detection capability is challenging to achieve for rovers with
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(a) Image was taken by Opportunity on the plains
of Meridiani at a place known as “Purgatory Dune”
during sol 491. Visual feature detection for navigation
is often insufficient to find adequate features in the
sandy regions. Credit: NASA/JPL-Caltech.

(b) This mosaic shows a region on Europa, where
the surface has broken apart into many smaller chaos
blocks that are surrounded by featureless matrix mate-
rial. The mosaic images were taken on September 26,
1998, by NASA’s Galileo spacecraft. Credit: NASA.

Figure 1. Examples of low-feature terrains on extraterrestrial environments.

limited energy sources and computational power. Early phases of planetary rover localization meth-
ods have exhibited large onboard localization errors and have had to rely primarily on human-in-the-
loop operations (Li et al., 2006). For example, maintaining a pose estimate using inertial measure-
ment units (IMUs) and wheel encoders is achievable on benign terrains; however, due to inertial nav-
igation system (INS) drift and wheel slip, wheel odometry (WO)-based localization is often challeng-
ing and results in a significant problem for rover localization over time (Maimone et al., 2007). For
this reason, Mars rovers have substantially benefited from stereo vision-based odometry to detect slip
and compute position updates whereas an IMU provides the attitude solution (Rankin et al., 2020).

Despite their reliability, vision-based systems operate by assuming that the terrain contains
sufficient visual texture for localization. This assumption poses a challenge on extraterrestrial bodies
where adequate visual features are lacking in the region (e.g., glacier ice, regolith, salt evaporites)
(Gonzalez and Iagnemma, 2018) or when the lighting conditions are insufficient (Zhang and Singh,
2015).

For example, consider the terrain at Purgatory Dune explored by the Opportunity rover (see
Figure 1(a)). Visual feature detection for navigation is often insufficient to find adequate features
in regolith. High-slip events and entrapment of the rovers are often experienced in terrains with
unconsolidated sandy terrains (Arvidson et al., 2014, 2017; Toupet et al., 2020a; Wilcox and Nguyen,
1998). Also, the majority of the visual odometry (VO) failures on Curiosity happened when the rover
was at a sandy terrain with a few obvious unique features (66/94 by sol 2488) (Rankin et al., 2020).
Hence, the rover operation usually needs to be altered to detect unique terrain features, such as
moving mast cameras (Strader et al., 2020) to the point of interest or using wheel tracks left by the
vehicle (Maimone et al., 2007). Degraded performance and unavailability of visual-based systems
are prone to increased localization drift on featureless terrains.

Apart from Martian exploration missions, the interest of the exploration of Europa has been
increased (Hand, 2018). Although the knowledge of Europa’s surface is extremely limited, ex-
periments for rover mobility purposes have been recently performed on salt evaporites and icy
terrains analogous to the Europa surface (Reid et al., 2020). Similar to the visually imperceptible
unconsolidated sands buried under the thin cover of basaltic sands on Mars (Arvidson et al.,
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2014), low-feature terrains on Europa are extremely challenging for vision-based systems and sparse
features can degrade the perception performance, leading to increased localization drift (see Figure
1(b)). Therefore, given that slip detection is only performed by VO-based methods in current rover
operations (Toupet et al., 2020a; Rankin et al., 2020), the concern for providing continuous slip
detection significantly increases when visual-based systems are unavailable.

1.2. Contribution
In our previous works, we employ two frameworks to leverage pseudo-measurement to provide
a reliable localization solution by using heuristically determined periodic stopping (Kilic et al.,
2019) and autonomous stopping (Kilic et al., 2021b). The present work offers the contribution of
detailing a proprioceptive slip detection technique that utilizes the accurate velocity estimation from
the localization framework detailed in our previous works. Current planetary rovers depend upon
sufficiently detected and tracked features for exteroceptive slip detection. The proposed method does
not depend on the visual characteristics of the environment and also only uses the proprioceptive
rover sensors already on board. Therefore, it can be used as a complementary slip estimation
technique when the visual sensor information is unavailable for current and upcoming planetary rover
missions. The effectiveness of the proposed method is demonstrated with field tests in a perceptually
degraded planetary-analog environment by qualitatively comparing with a commercial-off-the-shelf
visual inertial odometry (VIO) solution, wheel-encoder-based velocity estimation, and Differential
Global Positioning System (DGPS) velocity solutions.

1.3. Outline of Paper
The remainder of this paper is structured as follows: In Section 2, the literature on related
works is reviewed. In Section 3, an overview of the methods used in the work is provided. The
implementation of the methods for slip detection is detailed in Section 4. Experimental setup,
environment description, and the discussion of the field experiments with the accuracy and efficiency
of our method are provided in Section 5. The conclusion of the work and possible future research
directions are summarized in Section 6.

2. Related Work
In general, wheel slippage can occur when the terrain traversed fails (Iagnemma and Dubowsky,
2004) or when a kinematic incompatibility between wheels (i.e., different wheel speeds) is en-
countered (Gonzalez et al., 2018). Unexpected variances of terrains arise as non-systematic errors
(Borenstein and Feng, 1996), and they can cause significant position errors. Also, driving across
loose soil and sloped regions (Reina et al., 2010) poses a substantial risk for wheel slippage. For
example, if the rover traverses on a downward slope, the rover weight fraction in the movement’s
direction becomes greater, leading to an increased slippage. Vision-based approaches (e.g., VO) are
mostly used to estimate the rover slip (Reina et al., 2010; Johnson et al., 2008; Maimone et al.,
2007). VO is considered an accurate and reliable source of information for slip estimation; however,
it is computationally expensive for planetary rovers, especially when the rover is in motion. Using
VO substantially slows rover driving speed due to limited computational resources (Li et al., 2008;
Toupet et al., 2020a). Also, using VO over a long period decreases the rover traversal rate since
the rovers before Perseverance needed to stop periodically to acquire images (Toupet et al., 2020a).
Even with the additional dedicated field-programmable gate array (FPGA) processors (Lentaris
et al., 2015) and using the new enhanced Autonav for the Perseverance rover (Toupet et al.,
2020b), the other limitations of VO arise whereby it suffers from visually low-feature terrains and
it relies on proper lighting conditions (Strader et al., 2020). Similarly, insufficiently detected and
tracked features may lead to poor accuracy of motion estimate (Gonzalez and Iagnemma, 2018).
This limitation can be a decisive factor when the terrain is covered in sand, making the terrain
visually indistinguishable from sandy terrains. To alleviate some of the drawbacks of VO (e.g., poor
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illumination), there are some successful methods such as using vertically facedown cameras with
LED lights (Nagatani et al., 2010), which can be considered for future planetary robotic systems.
However, providing a reliable localization estimation using the sensors already on board without
altering any rover operation is a challenging problem for current planetary rovers.

Martian soil is exceptionally challenging for traversability; even throughout a single drive, Mars
rovers traverse on various terrains with different slopes (Arvidson et al., 2014). Although the Martian
terrain is not flat and contains a variety of local obstacle types (Arvidson et al., 2017), the Mars
Science Laboratory (MSL) rover drives under the assumption of flat terrain if it does not run the
Traction Control (TRCTL) algorithm, which is designed to reduce the rover wheel damage rate
(Toupet et al., 2018, 2020a). Various studies have modeled slip as a function of terrain geometry.
A notable example of this is presented in Angelova et al. (2006), which uses a mixture of experts
(MoE) structure to show the relationship between measured slip and visible terrain information.
However, the wheel-terrain interactions are not always dictated by the apparent topsoil of the
terrain (Gonzalez and Iagnemma, 2018). In particular, highly deformable sulfate-rich sands were
concealed beneath the thin cover of basaltic sands on the Martian surface, which are not visually
perceptible (Arvidson et al., 2014). For example, Mars Exploration Rovers (MERs) both became
embedded into the soft surface of Mars (Maimone et al., 2006; Arvidson et al., 2010) due to the
significant amount of slip. In May 2009, Spirit became permanently entrapped in soft soil (Leslie,
2016). Moreover, Curiosity faced a significant challenge to avoid sinking because of excessive wheel
slippage on a sandy surface in Hidden Valley (Xue et al., 2017; Cunningham, 2017). Due to greater
compaction resistance, the rover wheels suffer sinkage-related slippage while traversing such terrains.
A recent research has focused on exploiting the relation between slope and slip using proprioceptive
sensors along with exteroceptive data (Skonieczny et al., 2019). Although slope has a strong effect on
slippage, wheel slippage may also be observed in relatively flat terrains if the rover wheels encounter
kinematic incompatibility (Gonzalez et al., 2018). This is often experienced when one of the rover’s
wheels crosses over a rock and it takes a longer path than the others, causing the other wheels to
push forward (Toupet et al., 2020a).

Reliable and continuous perception is the critical capability for resilient localization. Since no
single observation can provide this, as previously mentioned, the vehicle can encounter critical
navigation failures in perceptually degraded situations. However, proprioceptive sensing can be used
in addition to geometric and semantic information. A robotic system can utilize the information
from some known conditions with proprioceptive sensing capabilities to provide a viable localization
estimation in permanently shadowed regions, extremely bright areas, and uniform and visually
indistinguishable terrains. Besides, the frequency of applying computationally expensive visual-based
adjustments can be reduced by having a more consistent onboard proprioceptive localization. Making
use of pseudo-measurements can be beneficial to improve the rover localization performance. There
are several strategies to take advantage of pseudo-measurements, including, but not limited to,
zero velocity/angular rate (Shin, 2005; Groves, 2013; Kilic et al., 2019; Brossard et al., 2019), zero
displacement (Groves, 2013; Kilic et al., 2021a), constant height/slope (Klein et al., 2010), and
non-holonomicity (Niu et al., 2010; Groves, 2013; Kilic et al., 2021b). In general, rovers are often
in stationary mode (Biesiadecki et al., 2006; Maimone et al., 2007; Rankin et al., 2020; Strader
et al., 2020). Employing Zero-Velocity Update (ZUPT) during stationary conditions is a well-known
idea, which was initially popularized as a technique to assist inertial pedestrian navigation (Foxlin,
2005; Norrdine et al., 2016). Publications that concentrate on pseudo-measurements more frequently
adopt its effectiveness in standard road conditions (Ramanandan et al., 2012; Xiaofang et al.,
2014; Brossard et al., 2019). Apart from utilizing pseudo-measurements to enhance localization
for autonomous cars, using them can be considered in rough terrains as well. For example, given
that planetary rovers stop more regularly than cars, ZUPT is a well-suited application to deal
with dead-reckoning drifts. Our previous studies have demonstrated that making use of pseudo-
measurements can substantially improve the rover localization only with common sensors already
on board (i.e., an IMU and wheel encoders) without using any additional dedicated sensors or
computational unit (Kilic et al., 2019, 2021b).
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3. Methods Overview
Apart from the exteroceptive slip detection in the current planetary rovers (e.g., Curiosity, Persever-
ance) that require camera outputs, this method utilizes the INS estimated velocity from our previous
works (Kilic et al., 2019, 2021b). Therefore, the accuracy of our proprioceptive slip detection relies
on the reliability of INS state estimation. In this respect, this section provides the fundamental
definitions and overviews of the methods to better grasp the underlying theoretical principles used
in this paper.

3.1. Proprioceptive Slip Detection
The slip ratio is a simple indicator to observe the slip, which can be formulated in different ways. This
formulation depends on the sensors used for estimating wheel velocity and body velocity (Gonzalez
et al., 2018). Observing the commanded distance and traversed distance, or commanded wheel
velocity and actual velocity, can be given as examples. In this work, the slip ratio is obtained by
comparing the difference between the velocity estimates from the filter and computed velocity based
on the vehicle kinematics.

The slip ratio (Wong, 2008; Amodeo et al., 2009), s ∈ [−1, 1], is defined as

s =


1− vx

rω (if ω 6= 0, vx < rω, s > 0 )
rω
vx
− 1 (if vx 6= 0, vx > rω, s < 0 )

0 (if vx = rω ∨ vx = ω = 0),
(1)

where vx is the translational velocity estimated from the INS, r is the wheel radius, and ω is the wheel
angular velocity estimated from the WO measurements in our method. If slip ratio is equal to zero, it
means the rover does not encounter any wheel slippage. Note that within this study, the wheel radius
is assumed to remain constant, considering that the average wheel ground pressure is greater than
the critical ground pressure and the wheel deformation is negligible (Siciliano and Khatib, 2016).

Slip ratio is usually distinguished as low, medium, and high slip. For example, upper and lower
thresholds for these slip ratio classifications are given as low slip (0 < |s| ≤ 0.3), medium slip
(0.3 < |s| ≤ 0.6), and high slip (0.6 ≤ |s|) in (Gonzalez et al., 2018, 2019; Endo et al., 2021). It
is reported that Curiosity rover traversal is forced to stop if a single significant slip measurement
exceeds a threshold between 0.7 and 0.9 or if there is consecutive slip measurement between 0.4 and
0.7 based on the past experience with the terrain and testing (Arvidson et al., 2017). Moreover,
based on the terramechanic observations, a 0.2 slip ratio is widely accepted as a significant slip
threshold due to its effect on the drawbar pull. This effect can be observable as the rate of drawbar
pull increasing with slip is higher in the 0.0–0.2 slip range than in the 0.2–0.8 slip range (Skonieczny
et al., 2019). This results in observing more sinkage in the 0.2–0.8 slip range. In this work, the
slip ratio is classified into five classes as no slip (s ≈ 0), low slip (0 < |s| ≤ 0.2), medium slip
(0.2 < |s| ≤ 0.4), high slip (0.4 < |s| ≤ 0.7), and extreme slip (0.7 < |s| ≤ 1.0), to include the slip
ranges based on the previous observations and past experience from the Martian rovers.

Planetary rovers try to avoid significant slip; however, the slippage is almost inevitable on rough,
sloped, and fine soil terrains. Experiencing a long-term significant slip may cause catastrophic results,
as in Spirit’s mission; however, rovers can halt their driving before reaching that point and correct
their route to reliably arrive at the end goal. For this reason, the rover should be aware when
experiencing a slip, even without using a visual-based system, given that most of the excessive
slippage events happened in highly deformable and not visually perceptible unconsolidated sands
buried under the thin cover of basaltic sands (Gonzalez and Iagnemma, 2018; Arvidson et al., 2010,
2014; Maimone et al., 2006; Leslie, 2016; Xue et al., 2017; Cunningham, 2017; Rankin et al., 2020).

3.2. Pseudo-Measurement Updates
Without external aiding, inertial sensor-based state estimation inherently exhibits accumulated
errors. A constant accelerometer bias causes a positioning error that grows quadratically in time,
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and a constant gyro rate bias results in a cubic error growth in position (Siciliano and Khatib, 2016).
Given that the wheel slippage mainly affects the wheel-encoder-based localization performance, a
reliable inertial localization system can be used for detecting the velocity discrepancies between the
rover (body) and wheel velocities. However, providing a reliable inertial localization system requires
the calibration of the IMU outputs. One way to calibrate the bias can be achieved by using the
additional sensor outputs (e.g., magnetometers, sun sensors). However, magnetometers are usually
not useful for obtaining global orientation when the planet of interest does not possess a global
magnetic field. Similarly, sun sensors are only useful when the sun is within the sensor’s field of view.
Another way to calibrate the IMU sensor biases can be achieved by utilizing pseudo-measurements
in certain conditions from the sensors already on board. For example, planetary rovers frequently
stop for a variety of reasons, such as safety checks (Rankin et al., 2020), mast pointing (Strader et al.,
2020), image processing (Maimone et al., 2007), and conducting scientific experiments (Biesiadecki
et al., 2006). Stopping is unavoidable even with the ideal case of the thinking-while-driving (TWD)
approach, which has recently been developed to minimize how often the rover needs to stop for
Perseverance (Toupet et al., 2020a). Since a rover is in stationary conditions in many instances,
utilizing this state information is a natural fit for planetary robots.

Pseudo-measurements are the constraints that are available to use in certain kinematic and
physical conditions. These pseudo-measurements can be applied as a measurement update to enforce
constraints on the states of a system and can be used in the system state estimation process in a
cost-effective way because the information is mostly gathered from the sensors already on board.
A toy example to demonstrate the pseudo-measurement capability of reducing error growth in the
INS-based localization is given in Figure 2. In this figure, a static IMU output with 50 Hz data
rate under the effect of Earth’s gravity field is processed with and without pseudo-measurement
updates. Since the used IMU is stationary for this toy example, we were able to control when
to enable pseudo-measurement updates in the state estimation. For example, ZUPT and ZARU
(zero updates) are enabled for one step size of the estimation (0.02 s), every 40 s. Non-holonomic
constraint updates are used in each time step of the INS estimation. After the 200th second, zero
updates are kept active. While it may be intuitive that these constraints provide information useful
for calibrating IMU sensor biases, this figure also illustrates that the position errors are further

(a) (b)

Figure 2. Toy example for using pseudo-measurements in the inertial positioning estimation. (a) INS-based
positioning with a static IMU under Earth gravity vector. The black line shows the INS-only positioning estimation
error, the red line shows the error when using zero updates (labeled as ZU for both ZUPT and Zero Angular Rate
Update (ZARU)) in the INS estimation, the blue line shows the error when using zero updates and non-holonomic
(labeled as NH) constraints in the INS estimation, and the dashed black lines indicate the time step when the
zero update is enabled for a step size based on the IMU data rate (0.02 s). The 3D positioning error is shown
with a logarithmic scale. (b) The figure is the magnified part of the left figure (gray shaded area) from 0 to 50
s. The position error is plotted with a linear scale.
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reduced to some extent after an update. This is due to the fact that correlations of IMU biases to
position errors are modeled and integrated over time in the INS process noise covariance matrix. In
the following sections, implementation details of the pseudo-measurement updates in an error-state
extended Kalman filter (EKF) for INS-based state estimation are given.

Zero Velocity Update. ZUPT can bound the velocity error, calibrate IMU sensor biases, and limit
the rate of INS localization error growth (Groves, 2013). In a planetary mission, the localization
system needs to be computationally tractable. Utilizing ZUPT in a localization framework does
not require any dedicated sensor or complicated processes except the acquisition of the IMU and
wheel encoder data. Therefore, this process can provide computationally efficient and accurate
real-time rover localization capability with the operations which are already available most of the
time for rovers. This is a particularly desirable consequence of using ZUPT in planetary robotics,
as computational resources in planetary rovers are limited by radiation-hardened hardware. IMU
sensor outputs are governed by sensor errors during the zero velocity. The measurement noise
covariance describes the variance and covariance of the nominally zero velocity due to vibration
and disturbances. This fact is used when performing zero velocity updates and the measurements
are fed into an error-state EKF to reduce the localization error growth of the system. Because
the error-state model maintains the correlation between the position and velocity errors of the error
covariance matrix, this procedure helps in decreasing the INS positioning error growth from cubic to
linear (Mather et al., 2006). This allows ZUPT to restrict error increase, assist in the determination
of biases which can be used to decrease future error growth, and offset the majority of position drift
since the last navigation stop. Improving localization performance by using ZUPT is detailed in our
previous works (Kilic et al., 2019, 2021b).

Zero Angular Rate Update. During stationary conditions, ZUPT can bound the roll and pitch
errors; however, heading error may accumulate rapidly due to poor observation of heading (Shin,
2005; Wahlström and Skog, 2020). In this case, a ZARU can be performed to decrease the heading
drift during a ZUPT. Similar to ZUPT, the idea is to use pseudo-measurement updates in the
error-state filter with angular rate error (Jiménez et al., 2010). In order to use a ZARU, the angular
rate of the rover should be zero. This can be identified by comparing the standard deviation of the
recent yaw-rate gyro measurements, steering-angle commands (considering steerable wheels), and
the yaw rate obtained from wheel odometry.

Non-Holonomic Motion Constraints. The non-holonomic motion constraints can be used when the
rover wheels do not move vertically or laterally to the traversal surface. This can be interpreted as
that these constraints become invalid when the rover experiences a slip sideways or a wheel loses
its contact to the surface for an extended period. For skid-steer rovers, even the rover wheels are
not steerable; these constraints are broken when a skid-steer robot experiences significant lateral
slip or during a turning motion. However, for steerable wheels, as in double Ackermann or four-
wheel-steering modes, these constraints can only be used during driving with zero velocity along
the rotation axis of any of rover wheels (Dissanayake et al., 2001).

4. Implementation
In this section, we present further details for our implementation to allow the reader to more easily
replicate our method. The implementation process includes a comprehensive formulation of the INS
mechanization, state estimation through an error-state EKF, using pseudo-measurements in the
error state, and a slip detection mechanism. A depiction of the framework is given in Figure 3.

4.1. INS Mechanization
The navigation equations are implemented in a locally level navigation frame following the strap-
down INS mechanization process as detailed in the literature (Savage, 1998a,b; Titterton et al.,
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Figure 3. A framework depiction of the proposed method. After initialization, the IMU observations are utilized
in the mechanization process and the propagation of the error state. Pseudo-measurements (ZUPT, ZARU, and
non-holonomic constraints) can be introduced to the state estimation process in certain kinematic and physical
conditions that were detailed previously. Slip detection is performed by comparing the difference between the
velocity estimates from the filter and computed velocity based on the vehicle kinematics.

2004) by closely following the formulation and notation provided in Groves (2013), and used in Kilic
et al. (2019, 2021b).

Attitude Update. The attitude estimation in a locally level navigation frame implementation can be
expressed as the body to navigation frame coordinate transformation matrix. The attitude update
is given as

Cn
b

(+) ≈ Cn
b

(−)(I + [ωb
ib×]τs

)
−
(
[ωn
ie

(−)×] + [ωn
en

(−)×]
)
Cn
b

(−)τs, (2)

where Cn
b ∈ R3×3 is the coordinate transformation matrix from the body frame to the locally level

frame, I is identity matrix, ωbib is the IMU angular rate measurement, ωnie is the planet’s rotation
vector represented in the locally level frame, ωnen is the transport term, τs is the IMU sampling
interval, and notation “×” stands for the skew-symmetric matrix of the vector.

Velocity Update. Assuming that the variations of the acceleration due to gravity, Coriolis, and
transport rate terms are all negligible over the integration interval, the velocity update is given as

vneb
(+) ≈ vneb

(−) +
(
fnib + gnb (L(−)

b , h(−)
b )− ([ωn

en
(−)×] + 2[ωn

ie
(−)×])vneb

(−))τs, (3)

where vneb ∈ R3 is the velocity update, fnib ∈ R3 are the specific force measurements from the
IMU acceleration sensors, and gnb is the gravity vector. The velocity estimation is given as planet
referenced in a locally level navigation frame.

Position Update. Assuming the velocity variation is linear over the integration interval, the position
update in the curvilinear form (latitude, longitude, height) is given as

h
(+)
b = h(−)

b −
(
vneb,D

(−) + vneb,D
(+))τs

2 , (4)

L(+)
b = L(−)

b + τs
2

vneb,N
(−)

RN (L(−)
b ) + h(−)

b

+ τs
2

vneb,N
(+)

RN (L(−)
b ) + h(+)

b

, (5)

λ(+)
b = λ(−)

b + τs
2

vneb,E
(−)(

RE(L(−)
b ) + h(−)

b

)
cosL(−)

b

+ τs
2

vneb,E
(+)(

RP (L(−)
b ) + h(+)

b

)
cosL(+)

b

, (6)

where hb, Lb, and λb are updated position estimates (expressed in terms of height, latitude, and longi-
tude, respectively), RN is the variation of the meridian, and RP is the transverse radius of curvature.
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4.2. Error-State Extended Kalman Filter
The Kalman filter is a linear estimator and cannot be used directly to estimate states that are
non-linear functions of either the measurements or the control inputs. The key concept in the
extended Kalman filter is the idea of linearization of a non-linear system about the current best
estimate (Jazwinski, 2007). In the error-state EKF, the error state is estimated instead of the total
state. Then the estimate of this error state can be used to correct the total state (Roumeliotis et al.,
1999; Groves, 2013). The total state vector is given as

xn =
(

Ψn
nb vneb pb

)T
. (7)

Error-State Model. The error state, δxn ∈ R15, is constructed in a local navigation frame,

δxn =
(
δΨn

nb δvneb δpb ba bg
)T

, δpb =
(
δLb δλb δhb

)T
, (8)

where δΨn
nb ∈ R3 is the attitude error, δvneb ∈ R3 is the velocity error, δpb ∈ R3 is the position

error, ba ∈ R3 is the IMU acceleration bias, and bg ∈ R3 is the IMU gyroscope bias. The position
error is expressed in terms of the latitude, longitude, and height, respectively.

INS System Matrix. The Jacobian of the error-state equations is used to compute the INS system
matrix. The system matrix and the state transition matrix (STM) are built once the time derivatives
of the error-state equations are defined. The errors are then converted into the local navigation frame,
and the velocity error’s time derivative is calculated by including the transport rate component.

The system matrix can be given as

Fn =


Fn11 Fn12 Fn13 03 Ĉn

b

Fn21 Fn22 Fn23 Ĉn
b 03

03 Fn32 Fn33 03 03
03 03 03 03 03
03 03 03 03 03

 . (9)

The elements of the INS system matrix are provided from Equations (31) to (38). Using the time
derivatives of the error-state equations, the state transition model can be assumed as

Φk ≈ eFkτs =
∞∑
α=0

Fαk τ is
α! . (10)

Neglecting the higher order terms after the first order, the elements of the STM for discrete time
can be approximated to

Φn
k ≈


I3 + Fn11τs Fn12τs Fn13τs 03 Ĉn

b τs

Fn21τs I3 + Fn22τs Fn23τs Ĉn
b τs 03

03 Fn32τs I3 + Fn33τs 03 03
03 03 03 I3 03
03 03 03 03 I3

 . (11)

Propagation/Prediction. In the propagation step, the error state given in Equation (8) is propa-
gated using the STM, such that

δx̌k = Φk−1δx̂k−1. (12)

Similarly, the error covariance matrix P ∈ R15×15 is propagated through if pseudo-measurements
are unavailable:

P̌k = Φk−1Pk−1ΦT
k−1 + Lk−1Qk−1LT

k−1, (13)
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where Qk is the process noise covariance, Lk is the process-noise-related Jacobian, and it is identity
in our case since the noise is assumed to be additive.

The process noise covariance matrix can be defined by the random walk of the velocity error due
to noise on the accelerometer specific-force measurements and random walk of the attitude error
due to noise on the gyro angular rate measurements (Groves, 2013). Integrating the power spectral
densities of the accelerometer and gyroscope noise over the state propagation interval, the INS
system noise covariance matrix can be given with closely following the notation in Groves (2013):

Qn
k =



Qn
11 QnT

21 QnT
31 03

1
2Sbgdτ

2
s Ĉn

b

Qn
21 Qn

22 QnT
32

1
2Sbadτ

2
s Ĉn

b
1
3Sbgdτ

3
sFn21Ĉn

b

Qn
31 Qn

32 Qn
33 Qn

34 Qn
35

03
1
2Sbadτ

2
s Ĉb

n QnT
34 SbadτsI3 03

1
2Sbgdτ

2
s Ĉb

n
1
3Sbgdτ

3
sFn21Ĉb

n QnT
35 03 SbgdτsI3

 , (14)

where Srg, Sra, Sbad, and Sbgd are the power spectral densities of the gyro random noise,
accelerometer random noise, accelerometer bias variation, and gyro bias variation, respectively
(Groves, 2013). The elements of the INS system noise covariance matrix in Equation (14) are given
in Equations (39)–(47).

The optimal gain can be calculated as

Kk = P̌kHT
k

(
HkP̌kHT

k + Rk

)−1
, (15)

where Hk is the measurement matrix and Rk is the measurement noise covariance. The estimate of
the error state can be given as

δx̂k = Kk (δzk −Hkδx̌k) , (16)

where zk is the corresponding available pseudo-measurement innovation that is given in the following
for each type of update used in this work.

Pseudo-Measurement Updates
Zero Velocity Update. The measurement innovation for ZUPT is

δzγ−ZV,k = −v̂γeb,k, γ ∈ e, n (17)

and the measurement matrix is

Hγ
ZV,k =

(
03 −I3 03 03 03

)
, γ ∈ e, n. (18)

Although ZUPT does not provide absolute position information, the Kalman filter system model
builds up information on the correlation between the velocity and position errors in the off-diagonal
elements of the error covariance matrix, P, and the cubic error growth for positioning is reduced to
linear. This enables a ZUPT to correct most of the position drift since the last measurement update
(see Equations (9) and (11)).

Zero Angular Rate Update. The measurement innovation for a ZARU can be given independent of
the coordinate frames used for position, velocity, and attitude states as

δz−ZA,k = −ω̂bib,k (19)

and the measurement matrix is

HZA,k =
(

03 03 03 03 −I3

)
. (20)
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Non-Holonomic Motion Constraints. The rover velocity constraints can be applied as a pseudo-
measurement update. Following the notation in Groves (2013), the measurement update for the
non-holonomic motion constraints can be expressed as

δznRC = −
(

0 1 0
0 0 1

)
(Cb

nvneb − [ωbib×]|Lbwb|), (21)

where Lbwb ∈ R3 is the lever arm from the non-steerable wheel frame to the body frame and ωbib ∈ R3

is angular rate measurement. In our setup, both rear and front wheels are non-steerable (skid-steer),
and the IMU has the same distance between rear and front wheels. For steerable vehicles, this
cannot be generalized as zero lateral velocity and the lever arm should be taken properly to use
non-holonomic motion constraints. The corresponding measurement matrix may be approximated
as

Hn
RC =

(
02,3

[
−Hl

−Hv

]
02,3 02,3 02,3

)
, (22)

where Hl is lateral constraint part, and Hv is the vertical part of the measurement matrix:[
−Hl

−Hv

]
=
(

0 1 0
0 0 1

)
Cb
n. (23)

State Correction. After having the error-state estimation, it can be used to correct the state.
Starting from a coordinate transformation matrix correction,

Ĉb
n = (I3 − [δΨk)×])ČnT

b . (24)

Then, the attitude correction can be given as

Ψ̂
n

nb =


atan 2

(
Ĉb
n(3,2), Ĉb

n(3,3)

)
asin

(
−Ĉb

n(3,1)

)
atan 2

(
Ĉb
n(2,1), Ĉb

n(1,1)

)
 . (25)

The velocity and position corrections are given as

v̂neb = v̌neb + δvneb, (26)
p̂b = p̌b + δpb. (27)

Finally, the error covariance matrix can be corrected as

P̂k = (I−KkHk) P̌k. (28)

4.3. Slip Detection
Considering Equation (1), the proprioceptive slip detection accuracy depends on the quality of the
velocity estimation from the filter. In an extreme case with a perfect INS state estimation (i.e., no
INS drift), rover localization would not be affected by this slip. In fact, wheel slippage only affects the
wheel odometry estimation considering the problem in the localization perspective. However, an INS-
based dead-reckoning system is prone to drift in real-world scenarios. Using pseudo-measurement
updates can significantly improve the INS-estimated velocity accuracy. Consequently, improved INS
velocity estimation can be used to detect slippage by comparing it with wheel-encoder-based wheel
velocities when VO is not available. The translational velocity is obtained with transforming the
INS velocity from navigation frame to body frame such that

[vx, vy, vz]T = Cbnvneb. (29)
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5. Field Experiments
5.1. Experimental Setup
Robot Description. WVU Pathfinder is a lightweight, four-wheeled, skid-steered testing platform.
The rover drivetrain is a double-bogie (as opposed to a rocker-bogie) system, where the two wheels
on one side are attached to the same bogie, and the robot body and other bogie are constrained
by a rotational differential bar. Left and right wheel pairs are controlled by motor controllers and
mounted on each side of the rover. It has 24-cm-diameter polyurethane wheels and each wheel is
capable of carrying a maximum of 40 kg payload. Even though these wheels are made of deformable
polyurethane material, they are assumed as rigid wheels since their inflation pressure is high (4 psi)
and the testing platform is lightweight (Siciliano and Khatib, 2016). The Pathfinder track width is
0.685 m, and wheelbase is 0.544 m. The rover is 15 kg, and its maximum speed is 0.8 m/s.

Robot Sensors. Different proprioceptive and exteroceptive sensor modalities such as IMU, wheel
encoders, and tracking cameras, as well as global navigation satellite system (GNSS) receivers
and antennas, are used to evaluate the results with reference solutions and for comparisons. To
measure the acceleration and rate gyro signals, a 16495 (ADIS 16495-2BMLZ) six-degree-of-freedom
(DOF) IMU model, which includes a triaxis gyroscope and a triaxis accelerometer, is utilized. ADIS
16495-2BMLZ IMU in-run bias and angular random walk values are 1.6 deg/hr, 0.1 deg/

√
hr for

the gyroscope, and 3.2 µg, 0.008 m/sec/
√

hr for the accelerometer, respectively. Wheel odometry
estimations are used as a standalone dead-reckoning solution for comparisons and as an aiding
measurement update to the inertial localization system. The WO inputs are generated by quadrature
Hall effect encoder feedback with 47,000 pulses/m for Pathfinder. Global positioning information is
collected with a dual-frequency Novatel OEM-615 GNSS receiver and L1/L2 Pinwheel antenna that
are mounted to the rovers. The GNSS solution is used for the initialization of the inertial localization
framework. The post-processed high-precision solution (e.g., DGPS) is used for comparisons and
truth generation for this work. Additionally, a commercial-off-the-shelf system, an Intel RealSense
T265 tracking camera, is used for localization performance comparisons. This system includes two
fisheye lens sensors, an IMU, and an Intel visual processing unit (VPU).

An IntelCore i7-8650U CPU was used in the rover to run the developed software and collect the
processed position data from the tracking system. The Robot Operating System (ROS) framework
is used for the software development, data processing, and data collection. One lesson learned from
this experimental work was the need for careful design of sensor update rates in consideration of real-
time processing with ROS. For example, our IMU was capable of providing 200-Hz measurements;
however, processing at this speed led to an increased potential of missing sensor callbacks. Due to
this reason, in this work, we decided to reduce the IMU processing rate from 200 to 50 Hz and it
was observed that using a 50-Hz IMU processing rate did not lead to missing sensor messages in the
ROS. The proposed method, tracking system, wheel odometry, and Global Positioning System (GPS)
information are stored in the computer and post-processed for comparisons and the datasets are
made publicly available.1

Truth Reference. Integer-ambiguity-fixed carrier-phase DGPS is used to determine a truth refer-
ence solution. The setup for the DGPS solution consisted of two dual-frequency GNSS receivers
and dual-frequency antennas, with one set mounted on a static base station and another affixed on
top of the test rover platforms. Both receivers recorded 10 Hz carrier-phase and GPS pseudorange
readings during the tests. These external GNSS measurements are utilized to generate the DGPS
solution during post-processing using the RTKLIB 2.4.2 (Takasu, 2009) software library. The DGPS
solution, which provides a centimeter-to-decimeter expected level of accuracy (Misra and Enge,
2006), is adopted as the truth in comparison analyses.

1 https://dx.doi.org/10.21227/vz7z-jc84
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Figure 4. Demonstration of the initial pose generation.

Figure 5. Pathfinder rover during field tests in a Martian-analog terrain located at Point Marion, PA.

Initial Pose Condition Estimation. A loosely coupled GNSS-INS sensor fusion approach is used
to initialize the pose prior to tests. The procedure starts with driving straight for a short distance
(∼10 m) to assess the absolute heading estimate. Then, the rover remains stationary for a reasonable
time (∼30 s) to initialize position before starting experiments. The rover is assumed to be on a level
surface as it starts the driving on a flat region (i.e., initial roll and pitch are equal to zero degrees).
This assumption is only applied for the initialization process. A depiction of this process is given in
Figure 4.

5.2. Environment Description
The experiments are performed in a field analog to Martian terrain (see Figure 5). This field consists
of burnt-coal ash piles located at Point Marion, PA. The topographic properties of the field include
sloped, pitted, fractured, and sandy areas. Moreover, the chemical composition of the field resembles
the abundant chemical compounds found in the Martian environment, such as aluminum oxide, iron
oxide, silicon dioxide, and calcium oxide (Peters et al., 2008; Ramme and Tharaniyil, 2004). For
these reasons, both visual and chemical characteristics of the field are considered sufficient for
experiments. It is acknowledged that simulating Mars soil requires measurement of the chemical
properties composition by weight composition percent by weight of the soil (Ming and Morris,
2017); however, this is beyond the scope of this study.

5.3. Evaluation
The method is evaluated with several comparison analyses. First, the VIO estimates from the
tracking system are statistically compared with the proposed method using root mean squared
error (RMSE) values of the 3D position estimates. Then, the slip detection accuracy and velocity
estimations are examined with respect to the DGPS-based velocity and slip detection. Finally, the
heading estimation for WO, DGPS, and proposed method are compared.

In a position estimation comparison field experiment on a perceptually degraded terrain, the
rover is remotely controlled for approximately 150 m and the comparison results are given for five
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Table 1. Statistical Position Error Comparison against VIO
VIO Proposed

RMSE (m) RMSE (m)

Case East North Up East North Up
ShortFast1 44.04 27.24 0.42 1.23 2.51 1.97
ShortFast2 2.70 10.41 2.12 1.03 0.49 0.65
ShortFast3 13.27 56.62 2.14 0.66 0.40 2.89
ShortFast4 1.41 12.22 1.59 2.26 1.76 0.38
ShortSlow 13.25 44.69 2.83 1.01 0.28 1.47

(a) ShortFast1 (b) ShortFast2

(c) ShortFast3 (d) ShortSlow

Figure 6. Absolute 3D position (East-North-Up) error accumulation figures with respect to time as the rover
travel increases. This figure shows a relationship between the distance traveled and the estimation error of the
proposed method and VIO estimation. The absolute error is calculated with respect to the DGPS solution.

cases in Table 1. The naming conventions for the test cases are selected relative to the distance
traversed and the rover velocity. For example, ShortFast stands for short distance (∼150 m) with
fast speed (∼0.8 m/s), LongFast is long distance (>500 m) with fast speed, and ShortSlow is short
distance with slow speed (∼0.3 m/s). The ShortSlow case is used for two specific observations: (1) to
observe the effect of having a slower velocity in the state estimation and (2) to observe the INS drift
for a longer traversal time. Absolute 3D position error accumulation for the ShortFast 1-2-3 and
ShortSlow cases in the East-North-Up (ENU) frame is given in Figure 6.
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(a) ShortFast1 (b) ShortFast2

(c) ShortFast3 (d) ShortSlow

Figure 7. Ground track depictions of the proposed method, VIO estimation, WO with IMU heading estimation,
and DGPS solution. The DGPS solution is treated as the truth ground track and given as a black line. VIO
estimation is given as a green line, WO-based estimation given as a cyan line, and the proposed estimation given
as a red line with blue circles (the blue circles are the slip values for s > |0.2|)

In areas with many visual features, the tracking system can produce dependable solutions, but
it often fails in places with few detectable and trackable elements. This is a typical problem with
visual-based localization methods since they require a decent number of distinct visual components
to function properly (Campos et al., 2020; Strader et al., 2020). For example, it is shown that the
VO method working on the Curiosity rover has a remarkable convergence rate in one of the most
recent works (Rankin et al., 2020); however, in the same work, it can be seen that the majority of
the VO failures on MSL are due to scarcity of sufficient features at sandy terrains. In our analysis
in a visually low-feature environment, we observedsimilar issues for using VO which can be seen
in Figure 7. In addition to that, in the ShortFast4 test, the VIO failed after 124 m of traversal
(see Figure 8). Moreover, even though it can keep the east positioning in a reasonable accuracy
for ShortFast2 and ShortFast4 tests, the position estimations of the north axis are more than 10
m RMSE for all tests. On the other hand, the proposed method in this work often outperforms
the VIO solution in this environment. The estimated velocity is compared with the post-processed
DGPS-based velocity solution to evaluate the performance of the proposed velocity estimation model
and the overall distribution of the translational velocity errors in the tests are given in Figure 10.
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(a) ShortFast4 Ground Track (b) ShortFast4 Error Accumulation

Figure 8. Ground track and error accumulation for ShortFast4 scenario.

Table 2. Confusion matrices of the estimated slip ratio values versus measured DGPS-based slip ratio classi-
fication. LF is LongFast (659 m, 0.8 m/s), SS is ShortSlow (146 m, 0.3 m/s), SF2 is ShortFast2 (145 m, 0.8
m/s), and SF3 is ShortFast3 (148 m, 0.8 m/s). The diagonal values of the column normalized matrix correspond
to the cases where the estimation identifies the same class as the truth. Each entry represents the percentage of
DGPS-based slip ratio that is estimated by the slip detector. For example, in LF, 7.1% of low slip classified as
medium slip, 2.6% of medium slip classified as high slip.

Truth Truth
LF No Slip Low Med High Ext SS No Slip Low Med High Ext

Es
tim

at
ed

NoSlip 98.3% 0.7% 0.4% 0.3% 0.4% NoSlip 97.5% 1.0% 0.2% 0.0% 0.0%
Low 1.4% 91.9% 77.1% 42.2% 39.0% Low 2.4% 96.0% 81.3% 39.6% 0.0%
Med 0.2% 7.1% 19.8% 30.2% 8.5% Med 0.1% 3.0% 17.4% 34.0% 0.0%
High 0.1% 0.3% 2.6% 24.0% 13.6% High 0.0% 0.0% 0.9% 22.6% 5.0%
Ext 0.0% 0.1% 0.2% 3.2% 38.6% Ext 0.0% 0.0% 0.2% 3.8% 95.0%
# Data 2303 5627 1809 308 236 # Data 1778 4049 563 53 40
SF2 No Slip Low Med High Ext SF3 No Slip Low Med High Ext

Es
tim

at
ed

NoSlip 99.5% 0.6% 0.3% 0.0% 0.0% NoSlip 99.1% 0.9% 0.0% 0.0% 0.0%
Low 0.5% 95.5% 84.4% 29.4% 0.0% Low 0.9% 96.0% 64.5% 0.0% 0.0%
Med 0.0% 3.8% 14.0% 29.4% 0.0% Med 0.0% 3.0% 32.6% 42.1% 0.0%
High 0.0% 0.1% 1.4% 35.3% 14.3% High 0.0% 0.1% 2.3% 36.8% 0.0%
Ext 0.0% 0.0% 0.0% 5.9% 85.7% Ext 0.0% 0.0% 0.7% 21.1% 100.0%
# Data 1263 1543 365 34 14 # Data 1133 1534 307 19 5

Based on both previous literature and Curiosity rover thresholds for slip (Arvidson et al., 2017;
Skonieczny et al., 2019), the measured absolute slip ratio is classified in five ranges: )1) no slip
(s ≈ 0), (2) low slip (0 < s ≤ 0.2), (3) medium slip (0.2 < s ≤ 0.4), (4) high slip (0.4 < s ≤ 0.7),
and (5) extreme slip (0.7 < s ≤ 1.0). Using these slip ratio ranges, confusion matrices of estimated
slip values versus truth (DGPS) slip values are quantitatively compared in Table 2 for LongFast
(LF), ShortSlow (SS), ShortFast2 (SF2), and ShortFast3 (SF3) scenarios. In order to qualitatively
represent the regions for the detected slip ratio values, classification figures with the absolute slip
ratio data points are given in Figure 6 for the estimated slip values with respect to the truth. The
slip detection is performed each time the wheel encoder data are available (10 Hz). The truth slip
detection rate is also 10 Hz. The estimated slip detection accuracy is calculated using DGPS-based
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slip detection such that

sTR =


1− vxT R

rω (if ω 6= 0, vxTR < rω, s > 0)
rω
vxT R

− 1 (if vxTR 6= 0, vxTR > rω, s < 0),
0 (if vxTR = rω ∨ vxTR = ω = 0)

sTR ∈ [−1, 1] (30)

where sTR is the DPGS-based slip ratio.
In these test cases, the LF has the longest traversal distance (∼650 m), which is an additional

test case to show the slip detection accuracy limit for longer distances, whereas other test cases are
between 140 and 150 m. The confusion matrices in Table 2 show the proprioceptive slip detection
accuracy for different ranges of slip values. In addition to the detection, the slip range classification
performed reliably for no-slip and low-slip ranges for all cases, and extreme slip is identified well for
short distances. Most of the medium-slip values were classified as low slip. Similar to the medium-slip
range, in general, the high-slip class overlaps between medium and low slip. Even though the slip
detection performed well, this class overlap may indicate the fuzzy boundaries of the slip regions for
classification. According to an experimental work on wheel-soil interaction characteristics (Shirai
and Ishigami, 2015), such a boundary is mainly due to the soil bulldozing and transportation effect.
In order to visualize these ambiguous boundaries, the values of the detected slip data in Table 2 are
plotted and given in Figure 9.

(a) LongFast (b) ShortSlow

(c) ShortFast2 (d) ShortFast3

Figure 9. Depictions of the detected absolute slip ratio data in the slip classification. The black data points in
each column represent the estimated class of detected slip and the data points in each row represent their actual
(DGPS-based) slip class. For example, the data points in the area in the 0.2–0.4 range (medium) estimated slip
class and the 0.4–0.7 range (high) actual slip class indicate the detected high slip values are estimated as medium
slip. The data points in colored regions indicate when the detected slip point and the actual slip are classified as
the same.
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(a) ShortFast3

(b) ShortSlow

(c) LongFast

Figure 10. Left figures show the velocity estimation compared to post-processed DGPS velocity solution that
assumed as truth velocity in the North-East-Down (NED) frame. Right histogram figures are the velocity error
distributions between the estimated and the truth velocities.

The accuracy decrease for longer distances (e.g., more than 500 m) could be attributed to the
limitation of using a dead-reckoning method without any external updates and also the quality of the
IMU. The IMU used in this study is a relatively low-cost sensor compared to Northrop Grumman
LN-200S IMU with fiber optic gyroscopes and solid state silicon MEMS accelerometers used in
MERs, Curiosity, and Perseverance. The error histograms in Figure 10 can also be interpreted as
the accuracy of the slip detection. Overall, these cases support the reliability of the method for
distances around 150 m in the test field for the used rover platform with the given sensor setup,
and also reveal the limitation of the method for the longer distances without external update.

The slip detection in this work depends on the velocity estimation accuracy. Specifically, the
translational velocity is used for calculating the longitudinal slip ratio. Given that the attitude of
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(a) LongFast

(b) ShortSlow (c) ShortFast2

Figure 11. The unwrapped heading estimation comparisons. The heading estimation accuracy is critically
important to have a reliable translational velocity for the slip detection. Proposed method overall accuracy at the
end amount: LongFast, 8 deg; ShortSlow, 2 deg; ShortFast, 0.01 deg. Traditional direct integration estimation
at the end amount: LongFast, 74 deg; ShortSlow, 14 deg; ShortFast, 17 deg.

the robot is used to integrate the velocity vector in the INS mechanism, the attitude estimation
accuracy is critically important to have a reliable translational velocity for the slip detection. In
this respect, to further evaluate the method, the estimated heading with the proposed architecture,
directly integrated heading estimation, and wheel-encoder-based heading are compared with the
DGPS-based heading estimation in Figure 11.

In Figure 11, the unwrapped heading comparisons show the error growth of unbounded estima-
tions for three different driving time intervals including 1000 s (long), 600 s (medium), and 300
s (short). After a relatively short drive, the WO-based heading estimation accumulates significant
heading error which is a well-known problem due to wheel slippage. Also considering the used rover
is a skid-steer rover, any small maneuver during traversal adds more error to the WO-based heading
estimation. Using a direct integration from the IMU for heading estimation could be useful for
short drives. This heading estimation is usually used to support the wheel odometry such that it
uses the velocities from the wheel encoders and the heading information from the IMU. However,
when the rover drives longer time, the drift becomes more significant. This is also related to the
grade of the used IMU; a higher grade IMU may provide better estimations for longer drives
without any external update (e.g., sun sensors). On the other hand, the proposed method, with
using pseudo-measurements, closely follows the truth (DGPS) heading. The overall accuracy at the
end amount for the LongFast test is 8 deg (Figure 11(a)), for ShortSlow is 2 deg (Figure 11(b)),
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and for ShortFast is 0.01 deg (Figure 11(c)) for these test cases. The comparison shows that the
proposed method outperforms the traditional heading estimation techniques, which can be leveraged
to estimate heading for short and medium driving duration reliably; however, it requires external
updates after a long driving time.

6. Conclusion and Future Work
In this work, we employ a method for slip estimation for the cases when visual-based perception is
not available. Slip estimation is only performed by VO-based methods in current rover operations;
however, a proprioceptive slip estimation technique can provide complementary information to
current and future missions in perceptually degraded environments. Since the proposed method
uses an INS-based state estimation method, the velocity estimations must be reliable to accurately
detect the wheel slippage. Without external aiding, inertial sensor-based state estimations inherently
exhibit accumulated error. This error accumulation can be alleviated with pseudo-measurements in
certain conditions during the traversal. Using pseudo-measurements in a proprioceptive localization
method does not require any specific sensor observations other than the acquisition of IMU and
wheel encoder data. In this respect, they provide a cost-effective solution to compensate the
INS drift. The effectiveness of the proposed method is demonstrated in a perceptually degraded
planetary-analog environment by qualitatively comparing with a commercial-off-the-shelf VIO
solution, wheel-encoder-based velocity estimation, and DGPS velocity solutions. Following the same
name convention as is used in this study, the datasets used are made publicly available.

There are also limitations and several assumptions in this work. In this regard, potential improve-
ments and future work are provided. Pathfinder has deformable polyurethane slick wheels. Due to the
physical characteristics of the used wheels, the rover is prone to encounter more slippage. This helps
to detect slippage with larger frequency and occurrence; however, it also degrades the localization
performance significantly. Using slick wheels limits testing of the algorithm on unconsolidated soils
with high slope values (more than 30 deg). These wheels are non-representative wheels for planetary
missions because maximizing wheel traction is one of the most important design criteria for the
rovers. Using the algorithms with better representative wheels such as mesh-woven spring wheels
or aluminum-made wheel design choices will be our next research direction. Another limitation is
that the used IMU in this study is a relatively low-cost MEMS device with limited sensing quality
comparing to what is used in planetary rovers. Since the blind driving is a dead-reckoning technique
(which causes the uncertainty of the state of the rover to increase with distance), this technique can
only be used over short distances in most situations. The length is limited to the distance chosen
as safe to drive by the rover planners (e.g., 25–60 m), which is based on the rover camera visibility
range, prior to employing this mode. We tested our localization algorithm with a maximum 670 m
length of blind driving to see its operational limits. Rover safety is more important than accuracy
for planetary missions; therefore, these lengths of drivings without a human-in-the-loop process may
not be suitable for planetary rovers in a manner of rover safety. In fact, most of our short-range
tests (∼150 m) are longer than the Curiosity rover’s longest drive (142.5 m) by sol 2488 (Rankin
et al., 2020).
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Appendix: INS System Matrix Elements

Denoting R̂E =
(
RE

(
L̂b

)
+ ĥb

)
and R̂N =

(
RN

(
L̂b

)
+ ĥb

)
, and adopting the formulation

in Groves (2013), the elements of the INS system matrix are provided as
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in×] (31)
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Appendix: INS System Noise Covariance Matrix Elements
The elements of the INS system noise covariance matrix, closely following the notation in Groves
(2013), can be given as
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where Tp
r(n) is

Tp
r(n) =

 1
RN (Lb)+hb

0 0
0 1

(RE(Lb)+hb) cosLb
0

0 0 −1

 , (47)

where RN is the radius of curvature for north to south motion, and RE is the radius of curvature
in east to west direction for the Earth.
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